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Abstract— Tracking controllers enable robotic systems to
accurately follow planned reference trajectories. In particular,
reinforcement learning (RL) has shown promise in the synthesis
of controllers for systems with complex dynamics and modest
online compute budgets. However, the poor sample efficiency
of RL and the challenges of reward design make training
slow and sometimes unstable, especially for high-dimensional
systems. In this work, we leverage the inherent Lie group
symmetries of robotic systems with a floating base to mitigate
these challenges when learning tracking controllers. We model a
general tracking problem as a Markov decision process (MDP)
that captures the evolution of both the physical and reference
states. Next, we show that symmetry in the underlying dynamics
and running costs leads to an MDP homomorphism, a mapping
that allows a policy trained on a lower-dimensional “quotient”
MDP to be lifted to an optimal tracking controller for the
original system. We compare this symmetry-informed approach
to an unstructured baseline, using Proximal Policy Optimization
(PPO) to learn tracking controllers for three systems: the
Particle (a forced point mass), the Astrobee (a fully-
actuated space robot), and the Quadrotor (an underactuated
system). Results show that a symmetry-aware approach both
accelerates training and reduces tracking error after the same
number of training steps.

I. INTRODUCTION

To achieve real-time operation, most robotic systems
utilize a “tracking controller” to stabilize a pre-planned
reference trajectory. However, tracking controllers designed
analytically often assume properties not enjoyed by all
robotic systems (e.g., “full actuation” [1]–[3] or “differential
flatness” [4]), while optimization-based methods frequently
rely on linearization or simplified models to meet compute
constraints [5]. In contrast, controllers trained via reinforce-
ment learning (RL) have relaxed structural assumptions while
enabling real-time operation with moderate resources [6]. In
[7], the authors train a single hovering policy for deployment
across a range of quadrotors, generalizing satisfactorily to
moving references. Meanwhile, massively parallel training
of quadrupedal walking policies from high-dimensional ob-
servations enabled startling robustness to uneven terrain [8],
and learned controllers augmented with adaptive feedforward
compensation have been shown to reject large disturbances
[9]. Unfortunately, these benefits come at a price: RL tends
to scale poorly with the size of the given Markov decision
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process (MDP), making it challenging to perform the explo-
ration needed to discover high-performance policies.

To mitigate this burden, an RL agent should share ex-
perience across all those states that can be considered
“equivalent” with respect to the reward and dynamics. In-
deed, robotic systems enjoy substantial symmetry [10]–[12],
which has been thoroughly exploited in analytical control
design [13]–[15] and optimization [16]. In fact, many learned
controllers have leveraged symmetry in an ad hoc or ap-
proximate manner (e.g., penalizing the error between actual
and reference states [7] or working in the body frame [9]).
More formally, the optimal policy of an MDP with symmetry
is equivariant (and its value function is invariant) [17], and
neural architectures can be designed accordingly to improve
sample efficiency and generalization [18].

Instead of incorporating symmetry into the network ar-
chitecture, [19] proposed “MDP homomorphisms”, which
establish a mapping from the given MDP to one of lower
dimension. There, a policy may be trained more easily
(using standard tools) and then lifted back to the original
setting. Such methods were originally restricted to discrete
state and action spaces, necessitating coarse discretization of
robotic tasks (which are naturally described on smooth man-
ifolds). [20] explored related ideas in continuous state and
action spaces, but assumed deterministic dynamics (whereas
stochasticity is fundamental to many tasks). However, [21]
recently extended the theory of homomorphisms of stochastic
MDPs to the continuous setting, recovering analogous value
equivalence and policy lifting results. They also learned
approximate homomorphisms from data, but do not give a
sufficient condition to construct a well-behaved homomor-
phism (i.e., for which the new state and action spaces are
also smooth manifolds) from a continuous symmetry known
a priori (as is the case for free-flying robotic systems [11]).

In this work, we explore the role of the continuous
symmetries of free-flying robotic systems in learned tracking
control. After reviewing mathematical preliminaries in Sec.
II, in Sec. III we cast a general tracking control problem
as a continuous MDP, using a stochastic process to model
the (a priori unknown) reference trajectory. We show that
this MDP inherits the symmetry enjoyed by the underlying
dynamics and running costs, and in Sec. IV we show that
such symmetries can be used to construct an MDP homo-
morphism, reducing the dimensionality. Unfortunately, the
proofs are relegated to a forthcoming preprint due to space
constraints. In Sec. V, we briefly describe three example sys-
tems. Finally, in Sec. VI we use these tools to learn tracking
controllers for the example systems, accelerating training,
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improving tracking accuracy, and generalizing zero-shot to
new trajectories. We discuss our results and contributions
in Secs. VII-VIII. Ultimately, these insights will facilitate
the efficient development of accurate tracking controllers for
various robotic systems.

II. BACKGROUND AND PRELIMINARIES

We now introduce some mathematical concepts. B(X )
denotes the Borel σ-algebra of X , and ∆(X ) denotes the
set of Borel probability measures on X (see [21, Appx. B]).
Throughout the paper, we largely follow the treatment of
[21], which (along with their prior work [22]) extends [19]
to study homomorphisms of Markov decision processes with
continuous (i.e., not discrete) state and action spaces.
Definition 1 (see [21]). A continuous Markov decision pro-
cess1 (i.e., an MDP) is a tuple M = (S,A, R, τ, γ), where:
• the state space S is a smooth manifold,
• the action space A is a smooth manifold,
• the instantaneous reward is R : S ×A → R,
• the transition dynamics are τ : S ×A → ∆(S), and
• the discount factor γ is a value in the interval [0, 1).

After taking action at from state st, the probability that st+1

is contained in a set B ∈ B(S) is given by τ(B | st, at).
A policy for M is a map π : S → ∆(A). The action-value
function Qπ : S ×A → R of a given policy π is defined by

Qπ(s, a) := E
τ∼π

[ ∞∑
t=0

γtR(st, at)
∣∣∣ s0 = s, a0 = a

]
, (1)

where τ ∼ π denotes the expectation over both the transitions
and the policy (i.e., st+1 ∼ τ( · | st, at) and at ∼ π( · | st) for
all t ∈ N). A policy π∗ is optimal if, for all s ∈ S,

π∗ = argmax
π

E
τ∼π

[ ∞∑
t=0

γtR(st, at)
∣∣∣ s0 = s

]
. (2)

A. Homomorphisms of Markov Decision Processes

The following notion describes a powerful link between
two continuous MDPs of (perhaps) different dimensions.
Definition 2 (see [21, Defs. 11 and 14]). A pair of
maps p : S → S̃ and h : S ×A → Ã is called a contin-
uous MDP homomorphism from M = (S,A, R, τ, γ) to
M̃ = (S̃, Ã, R̃, τ̃ , γ) if p and, for each s ∈ S, the map
hs : a 7→ h(s, a) are measurable, surjective maps, such that

R
(
s, a

)
= R̃

(
p(s), h(s, a)

)
, (3a)

τ
(
p−1(B̃) | s, a

)
= τ̃

(
B̃ | p(s), h(s, a)

)
(3b)

for all s ∈ S, a ∈ A, and B̃ ∈ B(S̃). Given a continuous
MDP homomorphism (p, h), a policy π for M̃, and a policy
π̃ for M, π is called a lift of π̃ if for all s ∈ S and A ∈ B(A),

π
(
h−1
s (Ã) | s

)
= π̃

(
Ã | p(s)

)
. (4)

Subsequently, we often omit the word “continuous” for
brevity. MDP homomorphisms facilitate the synthesis of an

1The more general definition in [21] does not assume S and A are smooth
manifolds, nor that τ( · | s, a) is a Borel measure, but this is all we need.

optimal policy for the original MDP M from an optimal
policy for the “quotient” MDP M̃, via the following theorem.

Theorem 1 (see [21, Thms. 12 and 16]). Suppose (p, h) is
an MDP homomorphism from M to M̃ and π is a lift of
any policy π̃ for M̃. Then, Qπ(s, a) = Q̃π̃

(
p(s), h(s, a)

)
.

Moreover, if π̃ is optimal for M̃, then π is optimal for M.

B. Lie Group Symmetries of Markov Decision Processes
A (left) group action of a Lie group G on a smooth

manifold X is a smooth map Φ : G × X → X (often writ-
ten Φg(x) := Φ(g, x) for brevity) such that for all x ∈ X
and g, h ∈ G, Φ(1G , x) = x (where 1G ∈ G is the identity)
and Φ

(
g,Φ(h, x)

)
= Φ

(
gh, x). The Φ-orbit of x is the

set ΦG(x) := {Φg(x) : g ∈ G}, while X/G is a set whose
elements are all the orbits of Φ. An action Φ is proper if
the map (g, x) 7→

(
Φg(x), x

)
is proper (i.e., the preimage of

any compact set is compact), and free if Φg(x) = x implies
g = 1G . A group G acts on itself via L : (h, g) 7→ hg.

A group action can describe a symmetry of some object
defined on the manifold. We now formulate the following
definition of a Lie group symmetry of a continuous MDP.
Definition 3. Given an MDP M = (S,A, R, τ, γ), a pair of
Lie group actions (Φ,Ψ) of G on S and A respectively is
called a Lie group symmetry of M if, for all Φ-invariant sets
B ∈ B(S) and all s ∈ S, a ∈ A, and g ∈ G, we have

R
(
s, a

)
= R

(
Φg(s),Ψg(a)

)
, (5a)

τ
(
B | s, a

)
= τ

(
B |Φg(s),Ψg(a)

)
. (5b)

Remark 1. The qualifier “Φ-invariant” on B broadens the
class of symmetries considered (and is more general than
[17] and [18], as noted in [23, Def. 35]). The deterministic
case (i.e., when τ( · | st, at) is the Dirac measure corre-
sponding to {st+1} ⊆ S) gives the intuition, since then (5b)
requires the image of any orbit in S ×A to lie within some
orbit in S, without enforcing equivariance within each orbit.

III. TRACKING CONTROL PROBLEMS
WITH LIE GROUP SYMMETRIES

In this section, we formulate a general trajectory tracking
problem as an MDP that models the evolution of both
the physical and reference systems. We give a sufficient
condition for this MDP to have a Lie group symmetry that
will be used (in Sec. IV) to reduce the problem size.
Definition 4. A tracking control problem is a tuple
T = (X ,U , f, JX , JU , ρ, γ), where:

• X is the physical state space (a smooth manifold),
• U is the physical action space (a smooth manifold),
• f : X × U → ∆(X ) is the the physical dynamics (i.e.,

xt+1 ∼ f( · |xt, ut) describes the system’s evolution),
• JX : X × X → R is the tracking cost,
• JU : U × U → R is the effort cost,
• ρ ∈ ∆(U) is the reference action distribution, and
• γ ∈ [0, 1) is the discount factor.
The distribution ρ is not usually included in the definition

of a tracking problem but will play an essential role in our
approach (see Remark 2).



A. Modeling a Tracking Control Problem as an MDP
We model the tracking task for reference trajectories that

are unknown a priori in the following manner.
Definition 5. A given tracking control problem T =(
X ,U , f, JX , JU , ρ, γ

)
induces a tracking control MDP

given by MT = (S = X × X × U ,A = U , R, τ, γ), where:
• the state is (x, xd, ud), where x, xd ∈ X are the actual

and reference states and ud ∈ U is the reference action,
• the actions are a = u ∈ U (i.e., the actual action),
• the instantaneous reward R : S ×A → R is given by

R
(
(x, xd, ud), u

)
:= −JX (x, xd)− JU (u, u

d), (6)

• and the transitions τ : S ×A → ∆(S) are defined by

xt+1 ∼ f( · |xt, ut),

xd
t+1 ∼ f( · |xd

t , u
d
t ), ud

t+1 ∼ ρ.
(7)

Remark 2. This formulation allows us to model a tracking
control problem over a broad class of reference trajectories
(i.e., those generated by a certain stochastic process) as a sin-
gle stationary MDP (i.e., with time-invariant transitions and
reward). While we could also formulate a (non-stationary)
MDP corresponding to a particular reference trajectory by
making the tracking cost a function of time t and the actual
state x, an optimal policy for that MDP would be useless
for tracking other references. In Sec. VI, we will show
empirically that policies trained in the proposed manner also
effectively track pre-planned reference trajectories, for which
the sequence of reference actions {ud

0 , u
d
1 , u

d
2 , · · · } is chosen

to induce a pre-selected state trajectory {xd
0 , x

d
1 , x

d
2 , · · · }.

B. Symmetries of Tracking Control MDPs
We now show that the MDP induced by a tracking

control problem with certain symmetries will inherit a related
symmetry with certain convenient properties.

Theorem 2. Consider a tracking control problem
T = (X ,U , f, JX , JU , ρ, γ) as well as Lie group actions
Υ : K ×X → X and Θ : H× U → U . Suppose that:

• JX is Υ-invariant and JU is Θ-invariant, i.e., for all
x, xd ∈ X , u, ud ∈ U , k ∈ K, and h ∈ H, we have

JX (x, xd) = JX
(
Υk(x),Υk(x

d)
)
, (8a)

JU (u, u
d) = JU

(
Θh(u),Θh(u

d)
)
. (8b)

• For each (k, h) ∈ K ×H, there exists k′ ∈ K such that
for all (x, u) ∈ X × U and B ∈ B(X ), we have

f
(
Υk′(B) |x, u

)
= f

(
B |Υk(x),Ψh(u)

)
. (9)

Define actions of the direct product group G = K ×H on
S = X × X × U and A = U , given respectively by

Φ(k,h)(x, x
d, ud) :=

(
Υk(x),Υk(x

d),Θh(u
d)
)
, (10a)

Ψ(k,h)(u) := Θh(u). (10b)

Then, (Φ,Ψ) is a Lie group symmetry of MT . Moreover, if
Υ and Θ are free and proper, then Φ is also free and proper.

Remark 3. Because we do not assume that k′ = k, (9) is
more general than equivariance of the transitions. However,
k′ must depend only on k and h, and not on x and u.

IV. CONTINUOUS MDP HOMOMORPHISMS
INDUCED BY LIE GROUP SYMMETRIES

We will use the following theorem to show that symme-
tries of a tracking control MDP can be used to reduce its
dimension via a homomorphism and also give an explicit
formula for policy lifting. Although related results are known
in the discrete [19] and deterministic [20] settings, we require
a more general result due to our continuous state and action
spaces and the random sampling of the reference actions
(even when the underlying dynamics f are deterministic).

Theorem 3. Consider an MDP M = (S,A, R, τ, γ) with
a Lie group symmetry (Φ,Ψ). Suppose that Φ is free and
proper and λ : S → G is any equivariant map. Define

p : S → S/G, s 7→ ΦG(s), (11a)
h : S ×A → A, (s, a) 7→ Ψλ(s)−1(a). (11b)

Then, (p, h) is an MDP homomorphism from M to
M̃ =

(
S̃ = S/G, Ã = A, R̃, τ̃ , γ

)
, where we define

R̃(s̃, ã) := R
(
s,Ψλ(s)(ã)

) ∣∣
s∈ p−1(s̃), (12a)

τ̃(B̃ | s̃, ã) := τ
(
p−1(B̃) | s,Ψλ(s)(ã)

) ∣∣
s∈ p−1(s̃) (12b)

independent of the particular choice of s. Also, for any policy
π̃ for M̃, a policy for M that is a lift of π̃ is given by

(π̃)↑(A | s) := π̃
(
Ψλ(s)−1(A) | p(s)

)
. (13)

V. QUOTIENT MDPS FOR TRACKING CONTROL
IN FREE-FLYING ROBOTIC SYSTEMS

Clearly, Theorems 1, 2, and 3 can be applied together to
reduce the MDP induced by a tracking control problem with
symmetry in its dynamics and running costs. We refer to our
open-source code for details (due to space constraints).
Example 1 (Particle). Consider a point mass m with
physical state (r, v) ∈ TR3 controlled by a force in R3. Run-
ning costs penalize error in position, velocity, and actions.
Using the left actions of TR3 and R3 on themselves, we
derive an MDP homomorphism where h(s, a) := u− ud and

p
(
(r, v), (rd, vd), ud

)
:= (r − rd, v − vd), (14)

reducing the tracking MDP from TR3 × TR3 × R3 to TR3.
Example 2 (Astrobee [24]). This rigid body’s state is
its pose and twist x = (q, ξ) in X = SE(3)× R6, and the
action is a wrench u ∈ R6. Running costs penalize error in
pose, twist, and wrench. Using SE(3) symmetry [11], we
derive an MDP homomorphism with h(s, a) := a and

p(q, ξ, qd, ξd, ud) :=
(
q−1qd, ξ, ξd, ud

)
, (15)

reducing the tracking MDP’s state space by 6 dimensions.
Example 3 (Quadrotor [25]). This underactuated aerial
robot has the same state space as the Astrobee, but the
actions are the “single-rotor thrusts” u ∈ U = R4 and gravity
reduces the symmetry group to SE(2)× R (corresponding
to horizontal plane displacements and vertical translations).
We derive an MDP homomorphism with h(s, a) := a and

p(q, ξ, qd, ξd, ud) := (q−1qd, R Te3, ξ, ξ
d, ud), (16)



TABLE I
COMPARISON OF RMS TRACKING ERROR ON PLANNED TRAJECTORIES

Environment G r [m] v [m/s] R [rad] ω [rad/s]

Particle

Baseline 2.50±0.25 0.93±0.11 - -
R3 0.12±0.4 0.06±0.23 - -
TR3 0.11±0.41 0.04±0.190.04±0.190.04±0.19 - -

TR3×R3 0.09±0.420.09±0.420.09±0.42 0.04±0.190.04±0.190.04±0.19 - -

Astrobee
Baseline 0.23±0.01 0.17±0.01 0.70±0.03 1.91±0.08
SE(3) 0.10±0.010.10±0.010.10±0.01 0.03±0.040.03±0.040.03±0.04 0.41±0.040.41±0.040.41±0.04 1.51±0.071.51±0.071.51±0.07

Quadrotor
Baseline 0.91±0.62 0.97±0.78 0.51±0.19 0.27±0.21
SE(2)×R 0.25±0.300.25±0.300.25±0.30 0.14±0.260.14±0.260.14±0.26 0.29±0.020.29±0.020.29±0.02 0.04±0.070.04±0.070.04±0.07

We report the mean and standard deviation (over n = 20 training seeds) of
the policy’s RMS tracking error (on a dataset of m = 20 trajectories).

noting that R Te3 is the gravity direction in body coordinates.

VI. EXPERIMENTS

We now explore the effects of our symmetry-informed
approach on sample efficiency and performance of model-
free reinforcement learning for tracking control. RL en-
vironments were implemented for each of the tracking
control MDPs in Examples 1-3, written in jax [26] for
performance. To implement environments for the quotient
MDP arising from reduction by a symmetry group, we
modify each environment’s observation to the reduced state
given in (14), (15), and (16) (whereas the baseline sees
the full-state observation (x, xd, ud)). We also modify the
actions according to the definition of h. For the Particle
environment, we isolate the effects of reduction by dif-
ferent subgroups of the symmetry by also implementing
environments reduced by translational symmetry alone (i.e.,
p(s) := (r − rd, v, vd, ud)) and by translational and velocity
symmetry alone (i.e., p(s) := (r − rd, v − vd, ud)).

We use a custom implementation of PPO [27] (see code
for details), with the same hyperparameters across all variants
of each environment. During training, the reference actions
are sampled from a stationary distribution (as in Def. 5), but
we evaluate zero-shot on pre-planned (dynamically feasible)
reference trajectories. Fig. 1 and Table I report total reward
(during training) and average tracking error (during evalua-
tion), starting the system from a randomized initial state.

VII. DISCUSSION

Fig. 1 shows a clear trend across the board: greater
symmetry exploitation leads to improved sample efficiency.
The tracking error evaluation shown in Table I and Fig.
1 follows a similar trend. For the Particle, the vast
majority of this benefit is achieved by reduction of the
translational symmetry, although incorporating the velocity
and force symmetries yields modest additional gains. This
seems consistent with the large improvement we see for the
Astrobee and Quadrotor after reduction by (a subgroup
of) SE(3). Careful reward engineering or hyperparameter
tuning might improve performance (especially for the base-
line, which currently fails to learn effectively), but we instead
focus on analyzing the benefit of exploiting symmetry for a
fixed reward. Nonetheless, any reward depending only on the
reduced state s̃ = p(s) would preserve the symmetry.

(a) Particle

(b) Astrobee

(c) Quadrotor

Fig. 1. Reward during training and tracking error components during evalu-
ation for the Particle, Astrobee, and Quadrotor, with translational
errors as solid lines and rotational errors (when applicable) as dashed lines.

Our approach assumes that at deployment, an upstream
planner provides dynamically feasible reference trajectories.
For the (underactuated) Quadrotor, these trajectories are
planned using differential flatness [25] from Lissajous curves
in the flat space. However, in theory any other method (e.g.,
direct collocation [28]) could be used to generate a suitable
reference. We expect our policies to generalize well to a wide
range of upstream planning methodologies, and future work
should explore this hypothesis. Going forward, we also hope
to apply these methods to new robot morphologies that are
too complex for real-time numerical optimal control or for
which no closed-form analytical controllers are known.

VIII. CONCLUSION

In this work, we exploit the natural Lie group symmetries
of free-flying robotic systems to mitigate the challenges of
learning trajectory tracking controllers. We formulate the
tracking problem as a single stationary MDP, proving that
the underlying symmetries of the dynamics and running costs
permit the reduction of this MDP to a lower-dimensional
problem. When learning tracking controllers for space and
aerial robots, training is accelerated and tracking error is
reduced after the same number of training steps. We believe
our theoretical framework provides insight into the use of
RL for systems with symmetry in robotics applications.
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