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Abstract—This paper proposes a new approach for Inertial
Measurement Unit (IMU) preintegration, a fundamental building
block that can be leveraged in different optimization-based
Inertial Navigation System (INS) localization solutions. Inspired
by recent advancements in equivariant theory applied to biased
INSs, we derive a discrete-time formulation of the IMU preinte-
gration on G(3) ⋉ g(3), the tangent group of the inhomogeneous
Galilean group G(3). We define a novel preintegration error that
geometrically couples the navigation states and the bias leading
to lower linearization error. Our method improves in consistency
compared to existing preintegration approaches which treat IMU
biases as a separate state-space.

I. INTRODUCTION AND RELATED WORK

Inertial Navigation Systems stand out as localization meth-
ods for their ability to utilize data from IMUs and fuse it with
other sensors to determine the position and orientation of a
mobile robot. However, traditional INS approaches often en-
counter challenges related to biases in the IMU measurements,
yielding decreased performances in real-world applications.
The recent introduction of the equivariant filter (EqF) [1]–
[3] has shown significant improvement in state estimation
for biased INSs [3], [4]. Researchers have successfully im-
proved consistency, robustness, and accuracy by leveraging
bias-inclusive symmetries and developing EqFs [3]–[11] that
outperform state-of-the-art methods based on the classical Ex-
tended Kalman Filter (EKF) and Invariant Extended Kalman
Filter (IEKF) [12]. Despite the advancements in the EqF
domain, a crucial gap persists in applying this novel and
promising theory to optimization-based estimation techniques,
whose increasing traction is driven by the growing affordabil-
ity of powerful and compact computing boards.

In the attempt to take a first step in that direction, this work
focuses on the IMU preintegration problem. IMU preintegra-
tion has become an essential component of optimization-based
localization methods for INSs since it allows the formulation
of a factor between two non-consecutive IMU poses by
exclusively relying on inertial measurements.

To the best of the authors’ knowledge, previous research on
IMU preintegration [13]–[19] has not exploited the symmetry
of the system to formulate an error that geometrically couples
the navigation and the bias states, instead of treating them
separately. This paper presents a novel equivariant approach
to the IMU preintegration problem. We introduce a symmetry
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Algorithm 1 IMU Preintegration on G(3) ⋉ g(3)
Define: ξ̊ = (I5, 010×1), X̂0 = (I5, − b∧0), Jξ0 = I20, Σ0,

Qd = diag(σd
2
ω, σd

2
a, 04×1, σd

2
τω , σd

2
τa , 04×1).

Input: w̃k = (ω̃k, ãk, 03×1, 1), τ k = 010×1,
δt = tk+1 − tk.

Output: X̂k+1⇔ ξ̂k+1, Σk+1, Jξk+1.

Require: IMU measurements (ω̃k, ãk) from k = 0 to N
for k ← 0 to N do

ũk ← (w̃k, τ̃ k)
X̂k+1 ← X̂kΛδt(ϕξ̊(X̂k), ũk) (23)
ξ̂k+1 ← ϕξ̊(X̂k+1) (28)
Σk+1 ← Âk+1ΣkÂ

⊺

k+1 + B̂k+1QdB̂
⊺

k+1 (30)
Jξk+1 ←Φbk+1Jξk (33)

end for

based on the tangent group of the inhomogeneous Galilean
group G(3) ⋉ g(3) and we define a linearized error dynamics
based on the equivariant error, which effectively establishes a
geometric coupling between the navigation states and the bias
states, thus resulting in better linearization for the navigation
states’ error. We extensively tested our novel equivariant IMU
preintegration: our method exhibited superior performance in
terms of consistency compared to state-of-the-art preintegra-
tion methods [13], [16]–[18] in all the sequences of the well-
known EuRoC MAV dataset [20].

II. THE INHOMOGENEOUS GALILEAN GROUP

Let X ∈ G(3) denote an element of the inhomogeneous
Galilean group, represented in its matrix form as

X =
⎡⎢⎢⎢⎢⎢⎣

A a b
01×3 1 c
01×3 0 1

⎤⎥⎥⎥⎥⎥⎦
∈ R5×5, (1)

with A ∈ SO(3), a, b ∈ R3 and c ∈ R.
Let x ∈ R10 so that x∧ ∈ g(3) denote an element of the Lie
algebra of G(3), which is represented by the matrix form

x∧ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω
v
w
α

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∧

=
⎡⎢⎢⎢⎢⎢⎣

ω∧ v w
01×3 0 α
01×3 0 0

⎤⎥⎥⎥⎥⎥⎦
∈ R5×5, (2)

with ω∧ ∈ SO(3), v ,w ∈ R3 and α ∈ R.
The inverse element in matrix form is written

X−1 =
⎡⎢⎢⎢⎢⎢⎣

A⊺ −A⊺ a −A⊺(b − c a)
01×3 1 −c
01×3 0 1

⎤⎥⎥⎥⎥⎥⎦
∈ R5×5. (3)



The adjoint matrices are defined as

Ad∨X ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A 03×3 03×3 03×1

a∧A A 03×3 03×1

(b − c a)∧A −cA A a
01×3 01×3 01×3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

ad∨x ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω∧ 03×3 03×3 03×1

v∧ ω∧ 03×3 03×1

w∧ −αI3 ω∧ v
01×3 01×3 01×3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Closed forms of the exponential and logarithmic maps are

exp(x∧)=
⎡⎢⎢⎢⎢⎢⎣

exp(ω∧) Γ1(ω)v Γ1(ω)w+αΓ2(ω)v
01×3 1 α
01×3 0 1

⎤⎥⎥⎥⎥⎥⎦
, (6)

log(X)=
⎡⎢⎢⎢⎢⎢⎣

log(A) Γ1(log(A)∨)−1a Γ1(log(A)∨)−1Ξ
01×3 0 c
01×3 0 0

⎤⎥⎥⎥⎥⎥⎦
, (7)

with Ξ = (b − cΓ2(log(A)∨)Γ1(log(A)∨)−1 a).
Γ1 and Γ2 denote respectively the SO(3) left Jacobian
and auxiliary function [21], both with known closed-
form expressions Γ1(ω) = I3 + κ1 ω∧ + κ2 ω∧ ω∧ and
Γ2(ω) = 1

2
I3 + κ2 ω∧ + κ3 ω∧ ω∧ with κ1 = 1−cos(∥ω∥)

∥ω∥2
,

κ2 = ∥ω∥−sin(∥ω∥)
∥ω∥3

, and κ3 = ∥ω∥
2
+2 cos(∥ω∥−2)

2∥ω∥4
.

Finally, the closed-form of the G(3) left Jacobian JL is

JL(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γ1(ω) 03×3 03×3 03×1

Q1(ω , v) Γ1(ω) 03×3 03×1

Ω −αU1(ω) Γ1(ω) Γ2(ω) v
01×3 01×3 01×3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

with Ω =Q1(ω ,w) − αQ2(ω , v).
The closed-form expressions for Q1, Q2, and U1 have been

omitted for space limitations1.

III. EQUIVARIANT IMU PREINTEGRATION

The core contribution of this work is the derivation of a
novel discrete-time formulation for the equivariant IMU prein-
tegration on the tangent group of G(3), i.e., G(3) ⋉ g(3).

A. Biased Inertial Navigation System (INS)

Consider a mobile robot equipped with an IMU that delivers
biased angular velocity and acceleration measurements. Under
non-rotating, flat earth assumption, the noise-free continuous-
time biased INS is characterized by the following equations:

Ṙ = R (ω − bω)∧ , (9a)
v̇ = R (a − ba) + g , (9b)
ṗ = v , (9c)

ḃω = τω, (9d)

ḃa = τ a, (9e)

where R ∈ SO(3) and v , p ∈ R3 denote the core states (or
navigation states), i.e., the rigid body orientation, velocity,
and position in the global reference frame. bω, ba ∈ R3 denote
the bias state, g ∈ R3 is the gravity vector, and ω , a ∈ R3

are the biased rigid body angular velocity and acceleration.
τω, τ a ∈ R3 are inputs used to model the evolution of the

1For the interested reader: https://seafile.aau.at/d/42179d0d19d14f3c9e67/

bias terms, e.g., they are zero if the biases are modeled as
constant quantities. Similarly to [3], [4], by extending (9) with
additional virtual inputs and bias states, the noise-free biased
INS can be reformulated as follows.

Let ξ = (T, b) ∈ M ∶= SE2(3) ×R9 represent the state
of the augmented system, where the extended pose
T = (R, v , p) ∈ SE2(3) represents the core states and
b = (bω, ba, bν) ∈ R9 represents the bias states, including the
IMU biases and an additional virtual velocity bias bν ∈ R3,
which was initially introduced in [3]. Define the systems’ input
u = (w, τ ) ∈ L ⊆ R18, where w = (ω , a, ν) ∈ R9 includes
the inertial measurements and an additional virtual velocity
input ν = 03×1, and τ = (τω, τ a, τ ν) ∈ R9 denotes the bi-
ases input. By defining the matrices

G ∶= [03×3 g 03×1

02×3 02×1 02×1
] ∈ R5×5, N ∶=

⎡⎢⎢⎢⎢⎢⎣

03×4 03×1

01×4 1
01×4 0

⎤⎥⎥⎥⎥⎥⎦
∈ R5×5,

we can represent the noise-free continuous-time biased INS in
compact form as ξ̇ = f(ξ, u), that is

⎧⎪⎪⎨⎪⎪⎩

Ṫ = (G −N)T + T(w∧ − b∧ +N)
ḃ = τ

, (10)

where w∧, b∧ ∈ se2(3).

B. Discrete-time IMU preintegration

Under the assumption of a constant noise-free input ui be-
tween consecutive time steps ti and ti+1, the exact discretiza-
tion of (10) results in the following discrete-time formulation
of the noise-free biased INS:

{
Ti+1 = exp((G −N)δt)Ti exp((w∧i − b∧i +N)δt)
bi+1 = bi + τ iδt

, (11)

where ξi = (Ti, bi) and ui = (wi, τ i) denote the state and
the input at the i-th time step, and δt = ti+1 − ti. Here, exp(⋅)
denotes the matrix exponential. Given two non-consecutive
time steps ti and tj , and defining the preintegration time
∆tij = tj − ti, the newest pose Tj is given by

Tj = Γij TiΥij , (12)

where Γij and Υij are exact integration terms defined as

Γij ∶=
j−1

∏
k=i

exp((G −N)δt) =
⎡⎢⎢⎢⎢⎢⎣

I3 g∆tij − 1
2
g∆t2ij

01×3 1 −∆tij
01×3 0 1

⎤⎥⎥⎥⎥⎥⎦
, (13)

Υij ∶=
j−1

∏
k=i

exp((w∧k−b∧k+N)δt) =
⎡⎢⎢⎢⎢⎢⎣

∆Rij ∆vij ∆pij

01×3 1 ∆tij
01×3 0 1

⎤⎥⎥⎥⎥⎥⎦
. (14)

Note that Γij is not to be confused with Γ1 and Γ2 of Sec. II.
By reorganizing (12) we obtain the following expression:

Υij = T−1i Γ−1ij Tj . (15)

We refer to Υij as the preintegration matrix, which stores all
the necessary information for relating Tj with Ti, as outlined
in (15). By reworking (14), the iterative computation of the
preintegration matrix, starting from j = i with Υii = I5, is

Υi(j+1) =Υij exp((w∧j − b∧j +N)δt). (16)



C. Symmetry of the preintegration problem

Equation (14) reveals that the preintegration matrix can
be represented as an element of the inhomogeneous Galilean
group G(3), which has been formalized in Sec. II. From here
onward, we adopt a lean notation by defining Υk ∶=Υi(i+k)

and bk ∶= bi+k, with ξ0 = (Υ0, b0) = (I5, bi).
Let us define M ∶= G(3) ×R10 and let ξk = (Υk, bk) ∈ M

represent the state of our system. The preintegration ma-
trix Υk = (∆Rk, ∆vk, ∆pk, ∆tk) ∈ G(3) denotes the pre-
integrated navigation states and the preintegration time. The
bias states are denoted by bk = (bωk, bak, bνk, bρk) ∈ R10

and include the IMU biases as well as two additional virtual
biases: a velocity bias bνk ∈ R3 and a time bias bρk ∈ R.
Define the systems’ input uk = (wk, τ k) ∈ L ⊆ R20, where
wk = (ωk, ak, νk, ρk) ∈ R10 represents the IMU readings
and two additional virtual inputs: a velocity input νk = 03×1,
and a time input ρk = 1. The corresponding bias inputs are
τ k = (τωk, τ ak, τ νk, τρk) ∈ R10.
The resulting formulation of the noise-free IMU preintegration
on the manifold M is presented as follows:

{
Υk+1 =Υk exp((w∧k − b∧k)δt)
bk+1 = bk + τ kδt

, (17)

where w∧k , b
∧

k ∈ g(3) and exp(⋅) denotes the G(3) group
exponential (6). The system written in compact form is

ξk+1 = Fδt(ξk, uk), ξ0 = (I5, b0), (18)

where Fδt ∶ M ×L→M and

Fδt(ξk, uk) = (Υk exp((w∧k − b∧k)δt), bk + τ kδt) .

Having successfully derived the system’s evolution on the
manifold, our next step is to establish the equivalent (lifted)
system that evolves within the symmetry group. This step is
crucial, as it enables us to define the equivariant error and to
subsequently linearize its dynamics, allowing the derivation
of the matrices used for the uncertainty propagation while
accounting for the input measurement noise.

For the remainder of the paper we simplify the notation
by defining the symmetry group G for the IMU preinte-
gration problem as G ∶=G(3) ⋉ g(3), that is the semi-direct
product between G(3) and its Lie algebra [22]–[24]. Let
Xk = (Ck, γk) ∈G be an element of the symmetry group.
Define the state action ϕ ∶G ×M→M as

ϕ(Xk, ξk) ∶= (ΥkCk, Ad∨C−1
k
(bk − γ∨k)) . (19)

Then, ϕ is a transitive right group action of G on M.
The inverse of the state action ϕ−1 ∶ M ×M→G is

ϕ−1
ξ̊
(ξk) = (Υ̊

−1
Υk, b̊

∧ − (Ad∨
Υ̊
−1

Υk
bk)∧) . (20)

Define the input action ψ ∶G ×L→ L as

ψ(Xk, uk) ∶= (Ad∨C−1
k
(wk − γ∨k), Ad∨C−1

k
τ k) . (21)

Then, ψ is a right group action of G on L. As a result, the
system in (18) is equivariant under the actions ϕ,ψ of G.
The proof is omitted for space limitations but it follows [3].
A discrete lift for the system is a map Λδt ∶ M ×L→G with

the lift condition ϕ (Λδt(ξk, uk), ξk) = Fδt(ξk, uk), ∀ξk ∈ M
and ∀uk ∈ L [11]. Define the discrete lift Λδt ∶ M×L→G as

Λδt(ξk, uk) ∶= (Λ1δt(ξk, uk), Λ2δt(ξk, uk)) , (22)

where

Λ1δt(ξk, uk) = exp ((w∧k − b∧k) δt) ,
Λ2δt(ξk, uk) = b∧k −AdΛ1δt

(ξk,uk)
[b∧k + τ∧kδt] .

Then, Λδt is an equivariant lift for the system in (18) with
respect to the symmetry group G. Finally, the lifted system
evolution on G is presented as follows:

Xk+1 =XkΛδt(ϕξ̊(Xk), uk) , X0 = ϕ−1ξ̊ (ξ0), (23)

where ξ̊ ∈ M is an arbitrarily chosen state origin and the
group product is defined in [22]. Note that we can transfer
elements from the symmetry group G to the manifold M
with ξk = ϕξ̊(Xk), and vice versa with Xk = ϕ−1ξ̊ (ξk).

D. Linearization of the error dynamics

The symmetry introduced in the previous subsection allows
to exploit the geometric structure of the equivariant error [1],
[2], [25] and hence to define an error as a measure between
the homogeneous space and the symmetry group. Specifically,
the equivariant error is defined as follows:

ek ∶= ϕ(X̂−1k , ξk) = (ΥkĈ
−1
k , Ad∨

Ĉk
bk + γ̂∨k) , (24)

where X̂k = (Ĉk, γ̂k) ∈G denotes the current state estimate
on the symmetry group, and ξk = (Υk, bk) ∈ M denotes the
actual (true) state on the manifold. Given ek ∈ M, we must
define a local parametrization in the neighborhood of ξ̊. A
typical choice of parametrization is logarithmic or normal
coordinates. Let us choose normal coordinates and define a
local chart ϑ ∶ M → R20 as

ϑ(ek) ∶= logG(ϕ−1ξ̊ (ek)) , (25)

where logG( ⋅ ) ∶G→ R20 denotes the logarithm of the tan-
gent group G(3) ⋉ g(3), which is defined as follows:

logG(Xk) = (log(Ck)∨, JL(log(Ck)∨)−1γ∨k ) , (26)

with log(⋅) and JL(⋅) respectively denoting the G(3) loga-
rithmic map (7) and the G(3) left jacobian matrix (8).
The error (24) expressed in local coordinates (25) is written

εk = ϑ(ek) = logG(ϕ−1ξ̊ (ϕ(X̂
−1
k , ξk))) . (27)

By fixing ξ̊ = (Υ̊, b̊) = (I5, 010×1) and considering that

ξ̂k = ϕξ̊(X̂k) = (Υ̊Ĉk, Ad∨
Ĉ−1

k

(b̊ − γ̂∨k)) = (Υ̂k, b̂k), (28)

we can expand (27) and express it as

εk =(log(ΥkΥ̂
−1
k )∨, −JL(log(ΥkΥ̂

−1
k )∨)−1Ad∨Υk

(bk− b̂k)). (29)

Let us consider a noisy input ũk = (w̃k, τ̃ k). w̃k = wk + ηwk

includes the noisy and biased IMU measurements ω̃k and
ãk as well as the two virtual inputs νk and ρk introduced
in Sec. III-C. τ̃ k = τ k + ητk denotes the noisy bias input. The



Table I
IMU PREINTEGRATION COMPARISON: NEES MEDIAN FOR DIFFERENT PREINTEGRATION TIMES ∆tij ON THE EUROC MAV DATASET [20].

Method SO(3) ×R6
×R6 [13] LI-SE2(3) ×R6 [16] RI-SE2(3) ×R6 [17] MAVIS [18] G(3) ⋉ g(3)

∆tij 0.2s 0.5s 1.0s 0.2s 0.5s 1.0s 0.2s 0.5s 1.0s 0.2s 0.5s 1.0s 0.2s 0.5s 1.0s

MH_01 1.374 2.547 4.070 1.374 2.545 4.070 1.373 2.545 4.071 1.371 2.549 4.030 1.186 1.866 2.347
MH_02 1.113 2.077 2.871 1.113 2.077 2.871 1.114 2.078 2.870 1.096 2.071 2.867 0.946 1.526 1.755
MH_03 1.210 2.667 4.545 1.208 2.663 4.545 1.215 2.660 4.547 1.219 2.660 4.537 1.207 2.269 3.221
MH_04 1.222 2.638 4.506 1.216 2.641 4.534 1.220 2.635 4.531 1.220 2.636 4.524 1.204 2.469 2.757
MH_05 1.383 3.404 4.516 1.383 3.405 4.502 1.383 3.405 4.515 1.382 3.378 4.512 1.377 2.645 2.668

V1_01 1.741 5.139 10.141 1.741 5.145 10.133 1.744 5.147 10.149 1.741 5.151 10.130 1.716 4.837 8.302
V1_02 1.363 2.456 3.844 1.370 2.466 3.834 1.371 2.463 3.837 1.382 2.467 3.841 1.339 2.330 2.458
V1_03 1.828 3.783 5.891 1.793 3.816 5.856 1.789 3.824 5.800 1.830 3.801 6.007 1.734 3.331 3.457
V2_01 2.024 5.644 8.406 2.023 5.643 8.411 2.022 5.649 8.413 2.024 5.644 8.402 2.006 5.350 7.342
V2_02 2.579 6.627 9.788 2.574 6.620 9.573 2.579 6.627 9.761 2.576 6.634 9.732 2.573 6.430 8.422
V2_03 3.047 8.290 13.549 3.047 8.216 13.573 3.047 8.213 13.546 3.047 8.254 13.623 3.025 7.935 11.145

The best results are in bold and the second-best results are underlined.

linearized error dynamics about εk = 0 ∈ R20 is then derived
as follows:

εk+1 ≈ Âk+1 εk + B̂k+1 ηk (30)

with ηk = (ηwk, ητk) ∈ R20,

Âk+1 = [
I10 JL(ẘkδt)δt

010×10 Ad∨exp(ẘ∧
k
δt)
] , (31)

B̂k+1 = [
−Ad∨

Υ̂k
JL((w̃k − b̂k)δt)δt 010×10

010×10 −Ad∨
Υ̂k+1

δt
] , (32)

and ůk ∶= ψ(X̂−1k , ũk) = (ẘk, τ̊ k) ⇒ ẘk =Ad∨
Υ̂k
(w̃k − b̂k).

E. Bias update and practical implementation

From (17) we note that the preintegration matrix Υ̂k+1 is
recursively calculated using the current bias estimate during
the mean propagation. Since it would be very time-consuming
to repeat the whole computation every time the estimated bias
gets updated during the optimization process, we perform the
bias update using first-order approximation similarly to [17].
The Jacobian matrix of ξk+1 with respect to b̂k is propagated
iteratively as Jξk+1 =Φbk+1Jξk starting from Jξ0 = I20, with

Φbk+1 = [
I10 −Ad∨

Υ̂k
JL((w̃k − b̂k)δt)δt

010×10 I10
] . (33)

Then, given a new bias estimate b̂+0 ← b̂0 +∆b̂, the bias
update on the preintegration matrix is performed as

Υ̂+k+1 ≈ exp((JΥk+1∆b̂)∧)Υ̂k+1, (34)

where JΥk+1 ∈ R10×10 is the upper right 10 × 10 corner of
Jξk+1, and exp(⋅) is the G(3) exponential map (6).

We finally derived all the necessary components for our
novel equivariant IMU preintegration, summarized in Alg. 1,
which iteratively propagates both mean X̂k and covariance Σk

of the equivariant error, together with the Jacobian Jξk for the
bias update. To streamline C++ development, we added both
G(3) and its tangent group G(3) ⋉ g(3) to the header-only
open-source library Lie++2.

IV. EXPERIMENTS AND RESULTS

To assess the real-world performance of our novel equiv-
ariant IMU preintegration on G(3) ⋉ g(3), we selected the

2https://github.com/aau-cns/Lie-plusplus
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Figure 1. Consistency comparison on the EuRoC MAV dataset [20]: NEES
box-plot for different preintegration times ∆tij = [0.2s, 0.5s, 1.0s] on the
V1_03 sequence. Orange lines indicate the medians while green triangles
denote the means.

well-known and widely recognized EuRoC MAV dataset [20],
which provides ground-truth poses, velocities and IMU biases,
as well as IMU measurements and noise parameters. We
partitioned each dataset sequence into sub-trajectories with a
duration corresponding to a preintegration time ∆tij . We then
performed the IMU preintegration for each sub-sequence with
different methods, starting from the ground-truth values and
with the same initial covariance, and we computed the NEES
at the end of ∆tij . This process was iterated across various
preintegration times, and we analyzed the NEES distribution
over all sub-sequences to derive statistical information for each
method. The proposed approach outperforms state-of-the-art
methods [13], [16]–[18] in terms of consistency across all
sequences in the dataset, as reported in Tab. I.

V. CONCLUSION

This paper introduces a theoretical framework for IMU
preintegration on G(3) ⋉ g(3) and successfully demonstrates
its performance when compared with state-of-the-art method-
ologies. Specifically, in this work, we leverage the tangent
group symmetry of the inhomogeneous Galilean group G(3)
to define a novel preintegration error that geometrically cou-
ples the navigation states and the bias states, ultimately im-
proving the covariance propagation, and hence the consistency,
for the preintegrated IMU measurements. Results show that the
proposed approach achieves the best NEES in every sequence
of the EuRoC MAV dataset and for every preintegration time.
Future work will focus on implementing and evaluating the
proposed preintegration method in a factor graph-based state
estimator.
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