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Abstract—This paper presents the Hybrid-MSCEqF. A real-
time suitable extension of the recently introduced multi state
constraint equivariant filter (MSCEqF), aiming at reducing the
accumulated drift in unobservable states and handling static
and quasi-static scenarios for a wide-range of mobile robotics
applications. We introduce a novel equivariant formulation of the
zero velocity update (ZVU) together with an extended symmetry
for the visual-inertial navigation problem to include fixed visual
landmarks into the filter state and define an update routine that
achieves third-order linearization error. The Hybrid-MSCEqF is
successfully deployed on a Raspberry Pi4 for real-time closed-
loop control of a resource-constrained aerial platform.

I. INTRODUCTION AND RELATED WORK

Visual-inertial odometry (VIO) stands as a key technology
in mobile robotics, autonomous vehicles, and augmented real-
ity, providing accurate ego-motion estimation by fusing visual
and inertial sensor data.

In the realm of filter-based frameworks for visual-inertial
odometry, the multi state constraint Kalman filter (MSCKF)
introduced by Mourikis and Roumeliotis [1], has seen numer-
ous modifications, including first estimate jacobian (FEJ) and
observability constraint (OC) filters to ensure consistency [2],
[3], [4], [5], stereo versions [6], [7], uncertainty propagation
through the feature triangulation [8], [9], and invariant ap-
proaches [10], [11], [12].

Recently, a novel methodology for filter design based on the
theory of equivariant filter (EqF) [13], [14], [15] for biased
inertial navigation systems [16], [17], [18] has demonstrated
superior performance in terms of robustness to wrong initial-
ization, transient behavior, and consistency properties. Build-
ing on these findings, van Goor et al. proposed a symmetry
for fixed landmark measurements in the context of VIO [19],
[20]. In our previous work [21], we leveraged the idea of the
multi state constraint in the context of equivariant filtering and
introduced the MSCEqF.

As advocated in our prior work [21], a people’s visual-
inertial odometry is an algorithm whose operation requires
minimal knowledge, little to no tuning, and exhibits reli-
able performance across many different real-world scenar-
ios. Despite the plateau reached by state-of-the-art visual-
inertial navigation system (VINS) in terms of accuracy and
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precision, considerable room for improvement remains in
enhancing robustness across many scenarios and ensuring ease
of deployment in practical settings. This paper presents the
Hybrid-MSCEqF as the next step towards the people’s VIO.
Specifically, we propose a real-time suitable extension of the
MSCEqF to minimize the accumulated drift and to handle
static and quasi-static scenarios commonly encountered in
mobile robotics applications. The main contributions of this
work include:

● Development of the equivariant formulation of the
Hybrid-MSCEqF as an extension of the MSCEqF that
incorporates persistent visual features as part of its state
exploiting the polar symmetry of SOT(3) for fixed
landmark measurements.

● Derived an equivariant persistent features update routine
achieving third-order linearization error.

● Introduction of a novel zero velocity update formulation
that exploits the equivariance of the system.

● Validation of the proposed algorithm through real-world
experiments and deployment on a Raspberry Pi4 for
closed-loop control of a resource-constrained aerial plat-
form.

II. THE VISUAL LOCALIZATION PROBLEM

Consider a mobile platform equipped with an inertial mea-
surement unit (IMU) providing biased acceleration and an-
gular velocity measurements, w = (ω , a) ∈ R6, and a camera
observing global visual features. Let T = (R, v , p) ∈ SE2(3)
be the extended pose of the system. R, p and v correspond
respectively to the rigid body orientation, the global position,
and global velocity of the IMU. Define P = (R, p) ∈ SE(3)
to be the pose of the system. Define b = (bω, ba, bν) ∈ R9

to be the gyroscope, accelerometer, and virtual velocity [16],
[18] biases, respectively. Let g denote the magnitude of the
acceleration due to gravity, and let e3 ∈ R3 denote the direction
of gravity in the global frame. Finally, define S ∈ SE(3) to
be the camera extrinsic calibration, and K ∈ IN (3) be the
camera intrinsic calibration.

Define u = (w, τ ) ∈ L ⊂ R18 to be the system’s input.
Define W = w∧ and B = b∧. Then, without loss of gener-
ality, the visual-inertial navigation system defined in [21] is



extended with a single visual feature pf ∈ R3 as follows.

Ṫ = T (W −B +N) + (G −N)T, (1a)

ḃ = τ , (1b)

Ṡ = 0∧, (1c)

K̇ = 0∧, (1d)
ṗf = 0. (1e)

τ is used to model the deterministic dynamics of the biases
and it is considered zero in our formulation.

Define ξI = (T, b) ∈ SE2(3) × R9 to be the inertial
navigation state. Define ξS = (S,K) ∈ SE(3) × IN (3) to
be the camera calibration state. Define ξf = pf ∈ R3 to be the
persistent feature state. Then the full system state is defined
as ξ = (ξI , ξS , ξf) ∈M ∶= SE2(3)×R9×SE(3)×IN (3)×R3.
Define u = (w, τ ) ∈ L ⊂ R18 to be the system’s input.

The camera measurement is modeled as the measurement
of the bearing of the feature pf seen from the camera.

h (ξ) =Kπ ((PS)
−1
∗ pf) , (2)

where the operation ∗ ∶ SE(3) × R3 → R3 is defined
by P ∗ x = R x + p for all P = (R, p) ∈ SE(3), x ∈ R3. π
represents the projection method, and it can either be the
projection on the unit plane πZ1 , or the projection on the unit
sphere πS2 .

III. VINS SYMMETRY

The symmetry for the inertial navigation state ξI is given
by the Tangent group of SE2(3): GTG ∶= SE2(3) ⋉ se2(3),
the symmetry for the extrinsic calibration state is given by
the special Euclidean group SE(3), and the symmetry for the
intrinsic calibration state is given by the intrinsics group IN.

The notation employed in the next sections follows those
of our previous work [21]. Specifically, we make use of the
maps Π (⋅) ,Υ (⋅) ,Γ (⋅), and Θ (⋅), introduced in [21, Section
II.F].

A. VINS extended symmetry

Define a novel group G ∶=GTG × SE(3) × IN × SOT(3)
termed VINS group. Elements of the VINS group G and
the state action ϕ ∶ G ×M → M are defined as follows:

X = ((D,δ) ,E,L,Q) ∈G, (3)

X−1 = ((D−1,−AdD−1 [δ]) ,E
−1, L−1,Q−1) ∈G, (4)

ϕ (X,ξ) ∶= (TD,Ad∨D−1 (b − δ
∨
) ,C−1SE,KL,

P SE ∗ (Q−1 ((P S)
−1
∗ pf)) ) ∈M,

(5)

where D = (A,a, b) ∈ SE2(3) such that A ∈ SO(3), a, b ∈ R3.
Define the subgroup elements and C = Θ (D) ∈ SE(3).
Define E ∈ SE(3), L ∈ IN, and finally, define
Q = (Q,q),Q−1 = (Q⊺, 1

q
) ∈ SOT(3). Note that

P SE ∗ (Q−1((P S)−1 ∗ pf)) is a concatenation of
roto-translation actions of SE(3), and rotation and scaling
actions of SOT(3) on R3.

The lift presented in [21] is extended as follows.

Theorem III.1. Define Λ1,Λ2 ∶ M ×L → se2(3),
Λ3 ∶ M ×L → se(3), and Λ4 ∶ M ×L → in as follows:

Λ1 (ξ, u) ∶= (W −B +N) + T−1 (G −N)T, (6a)
Λ2 (ξ, u) ∶= adb∧ [Λ1 (ξ, u)] − τ

∧, (6b)
Λ3 (ξ, u) ∶= AdS−1 [Υ (Λ1 (ξ, u))] , (6c)
Λ4 (ξ, u) ∶= 0

∧. (6d)

Let Λ3 (ξ, u) = (Ω,ω) ∈ se(3), with Ω ∈ so(3) and
ω ∈ R3. Let cf = (P S)−1 ∗ pf . Define the map
Λ5 ∶ M ×L → sot(3) by

Λ5 (ξ, u) = (Ω +
c∧f ω

∥cf∥2
,
c⊺f ω

∥cf∥2
) (7)

Then Λ ∶ M ×L → g given by

Λ (ξ, u) ∶= ((Λ1 (ξ, u) ,Λ2 (ξ, u)) ,⋯,Λ5 (ξ, u)) ,

is an equivariant lift for the system in equation (1), with
respect to the symmetry group G.

IV. HYBRID-MSCEQF

Multi state constraint filters are specifically designed to
minimize computational complexity. They do not retain visual
landmarks as part of their state, resulting in high sensitivity to
accumulated drift. In contrast, classical filter-based algorithms
incorporate a subset of visual landmarks as part of their state,
with the benefit of limiting the accumulated drift, allowing
for loop-closures [22], [23], albeit at the expense of increased
computational complexity.

In this work, we exploit the polar symmetry of fixed
landmark measurements introduced by van Goor et al. [24],
[25], [26], [19], [20], [27], and propose an extension of the
MSCEqF to include a subset of visual landmark as part of its
state.

A. Equivariant persistent feature update

We exploit the equivariance of visual features projected onto
the unit-sphere given by the polar symmetry [20] to derive
an update routine for the Hybrid-MSCEqF that achieves third
order third-order linearization error. In doing so, we assume
the camera intrinsic parameters K as fixed and only update
them during the multi state constraint update routine [21].

Lemma IV.1. Consider the configuration output in equa-
tion (2) when the projection on the unit sphere πS2 is chosen:

h(ξ) = πS2 ((PS)
−1
∗ pf) ∈ N ∶= S2. (8)



Applying the action ϕ of the symmetry group in equation (5)
yields

h(ϕX(ξ)) = πS2 ((P SE)
−1

P SE ∗ (Q−1 ((P S)
−1
∗ pf)))

= πS2 (Q
−1
((P S)

−1
∗ pf))

= πS2 (
1

q
Q⊺ ((P S)

−1
∗ pf))

= Q⊺πS2 ((P S)
−1
∗ pf)

= Q⊺h(ξ).

Let y ∈ N be a measurement defined according to the model
in equation (8). Define ρ ∶ G ×N → N as

ρ (X,y) ∶= Q⊺y. (9)

Then, the configuration output defined in equation (8) is
equivariant.

Let ẙ ∶= h(ξ̊), then local coordinates for the output are
defined as follows:

δ(y) = ẙ∧y ∈ R3. (10)

The equivariance of the output in equation (8) allows us to
achieve third-order linearization error through the equivariant
output approximation [14], [18], hence the C⋆ matrix is
written

C⋆ε =
1

2
ẙ∧ (ẙ + Q̂y)

∧
εQ

= [03×9 03×6 03×6 03×4 1
2
ẙ∧ (ẙ + Q̂y)

∧
03×1] ε.

V. EQUIVARAINT ZERO VELOCITY UPDATE

For multi state constraint filters type, different strategies
are proposed to better handle zero motion scenarios. Common
approaches include optimized keyframe section [28], [29] and
zero velocity update (ZVU) [3]. While the former seeks to
optimize the selection of cloned poses in the sliding window
to always ensure sufficient parallax and hence a successful
feature triangulation, the latter seeks to identify zero motion
scenarios through heuristics and perform a zero velocity filter
update.

Here, we exploit an extended pose measurement with con-
stant position, rotation, and zero velocity to define a novel
equivariant zero velocity update formulation, which models
the stationarity of the platform rather than purely zero velocity.

Lemma V.1. Define the zero velocity update measurement
model h (ξ) as follows:

h (ξ) = T = (R, v , p) ∈ N ∶= SE2(3). (11)

Let y = (R̂, 0, p̂) ∈ N be a measurement defined according to
the model in equation (11), define ρ ∶ G ×N → N as

ρ (X,y) ∶= yD. (12)

Then, the configuration output defined in equation (11) is
equivariant.

Local coordinates for the output are chosen to be logarith-
mic coordinates of SE2(3), hence define

δ(y) = logSE2(3)(T̊
−1y). (13)

Exploiting the equivariance of the ZVU output, the C⋆ matrix
for the zero velocity update is written

C⋆ε =
1

2
((I9 + T̊

−1yD̂−1) ε∧D)
∨
= εD

= [I9 09×6 09×6 09×4 09×6 ⋯ 09×6] ε.

In our approach, stationary detection is performed based
on a threshold of the image disparity over a rolling window
of image data. This approach can be extended with robust
methodologies such as statistical stationarity test [30] or
frequency-domain techniques [31] on a rolling window of IMU
data.

VI. IMPLEMENTATION DETAILS

The proposed framework is implemented as a stand-alone
C++ library and used with a ROS wrapper for the experiments.

The vision frontend is implemented utilizing the OpenCV
library [32]. The feature detector can be chosen between Good
Feature to Track (GFTT) and Fast. The input image is divided
into a N ×M grid, and the feature extraction is executed in
parallel. A minimum pixel distance between detected features
is imposed; furthermore, sub-pixel refinement is performed.
Detected features are subsequently tracked between consecu-
tive images using the pyramidal Lucas-Kanade algorithm [33]
with the previous flow as the initial value, and RANSAC is
used to remove outliers.

The estimation back-end is implemented utilizing a self-
developed Lie group library: Lie++. A High-level overview
of the filter logic is shown in the flowchart in figure 1. At
the beginning, the filter tries to initialize the state origin ξ̊.
This is done by collecting a window of IMU measurements
during a still phase and computing the roll and pitch of the
platform. Origin position and velocity are set to zero, and
origin calibration is set to the provided values. Once the state
origin is initialized, the feature extraction and matching, and
the propagation are executed in parallel on different threads.
Once the propagation is performed, either a stochastic cloning
or a zero velocity update is performed. When the zero velocity
update is not active or the platform is moving, the multi state
constraint update is performed. Furthermore, active persistent
features are updated. Finally, features that are not yet persistent
but belong to long tracks, hence, that have been tracked in
every active clone, are initialized as persistent.

VII. CLOSED-LOOP CONTROL

To evaluate the real-time performance of the Hybrid-
MSCEqF, we run the proposed algorithm online for au-
tonomous closed-loop control of the aerial platform.

The platform used for the experiments is a Twins twinFOLD
SCIENCE quadcopter equipped with a Raspberry Pi4 with
4GB of RAM as a companion board. The IMU data was
collected from the quadcopter autopilot, a Holybro Pixhawk 4
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Figure 1. Flowchart of the proposed Hybrid-MSCEqF.
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Figure 2. UAV trajectory, attitude, and position plots for the closed-loop control experiment. In red is the groundtruth and in blue is the estimate produced by
the proposed Hybrid-MSCEqF. The algorithm was run on a Raspberry Pi4, and its estimate was used for closed-loop control of an autonomous quadcopter.

at 200Hz, whereas the image data was collected at 15Hz from
a 60○ downward-looking Matrix Vision BlueFox MLC200WG
global-shutter camera with 752×480 CMOS grayscale sensor
and a lens with diagonal field of view of 120○.

The experiment consists of flying 5 times a 2.5m×1.5m
square trajectory for a total length of 40m, excluding takeoff
and landing. For this experiment, the Hybrid-MSCEqF was
configured to track 80-100 features for a maximum of 9
keyframes. The zero velocity update was always enabled, and
the maximum number of persistent features was set to 10.

Aligned trajectory, position, and orientation plots of the
estimate, as well as the groundtruth obtained with a motion
capture system, are reported in figure 2. The alignment was
done using only the first measurement [34], rather than finding
an optimal alignment that minimizes the error.

The root mean square error (RMSE) of the absolute trajec-
tory error (ATE) for this experiment sets at 0.71° and 0.14m.
Moreover, to evaluate the accumulated drift, we calculated the
mean position and angular error for the last second of the
trajectory. We obtained a final angular error of 0.73° and a

final position error of 0.14m which corresponds to a drift of
0.35% of the total trajectory length.

VIII. CONCLUSION

This paper presented the Hybrid-MSCEqF, an equivariant
visual-inertial odometry framework extending the MSCEqF
with a novel equivariant formulation of the zero velocity
update and the polar symmetry for fixed landmark measure-
ments. With the proposed algorithm, we address the need for
a VIO algorithm that achieves state-of-the-art performance
and superior robustness while handling static and quasi-static
scenarios commonly encountered in mobile robotics.

The proposed algorithm demonstrated successful deploy-
ment on a Raspberry Pi4 for closed-loop control of a resource-
constrained aerial platform, exhibiting good performance with-
out requiring extensive fine-tuning of the filter’s parameters.

The Hybrid-MSCEqF together with the Lie++ library,
will be made available to the community for direct
use and comparison against other approaches at the
following links: https://github.com/aau-cns/MSCEqF and
https://github.com/aau-cns/Lie-plusplus.

https://github.com/aau-cns/MSCEqF
https://github.com/aau-cns/Lie-plusplus


REFERENCES

[1] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” Proceedings - IEEE Interna-
tional Conference on Robotics and Automation, pp. 3565–3572, 2007.

[2] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “OpenVINS:
A Research Platform for Visual-Inertial Estimation,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 4666–4672,
5 2020.

[3] X. QIU, H. ZHANG, and W. FU, “Lightweight hybrid visual-inertial
odometry with closed-form zero velocity update,” Chinese Journal of
Aeronautics, vol. 33, no. 12, pp. 3344–3359, 12 2020.

[4] C. Chen, Y. Yang, P. Geneva, and G. Huang, “FEJ2: A Consistent Visual-
Inertial State Estimator Design,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 9506–9512, 2022.

[5] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Con-
sistency analysis and improvement of vision-aided inertial navigation,”
IEEE Transactions on Robotics, vol. 30, no. 1, pp. 158–176, 2014.

[6] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,
C. J. Taylor, and V. Kumar, “Robust Stereo Visual Inertial Odometry
for Fast Autonomous Flight,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 965–972, 4 2018.

[7] S. Bahnam, S. Pfeiffer, and G. C. De Croon, “Stereo Visual Inertial
Odometry for Robots with Limited Computational Resources,” IEEE
International Conference on Intelligent Robots and Systems, pp. 9154–
9159, 2021.

[8] A. Solin, S. Cortés, E. Rahtu, and J. Kannala, “PIVO: Probabilistic
inertial-visual odometry for occlusion-robust navigation,” Proceedings
- 2018 IEEE Winter Conference on Applications of Computer Vision,
WACV 2018, vol. 2018-January, pp. 616–625, 5 2018.

[9] O. Seiskari, P. Rantalankila, J. Kannala, J. Ylilammi, E. Rahtu, and
A. Solin, “HybVIO: Pushing the Limits of Real-time Visual-inertial
Odometry,” Proceedings - 2022 IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, WACV 2022, pp. 287–296, 2022.

[10] S. Heo and C. G. Park, “Consistent EKF-Based Visual-Inertial Odometry
on Matrix Lie Group,” IEEE Sensors Journal, vol. 18, no. 9, pp. 3780–
3788, 5 2018.

[11] K. Wu, T. Zhang, D. Su, S. Huang, and G. Dissanayake, “An invariant-
EKF VINS algorithm for improving consistency,” IEEE International
Conference on Intelligent Robots and Systems, vol. 2017-September, pp.
1578–1585, 12 2017.

[12] Y. Yang, C. Chen, W. Lee, and G. Huang, “Decoupled Right Invariant
Error States for Consistent Visual-Inertial Navigation,” IEEE Robotics
and Automation Letters, vol. 7, no. 2, pp. 1627–1634, 4 2022.

[13] P. Van Goor, T. Hamel, and R. Mahony, “Equivariant Filter (EqF): A
General Filter Design for Systems on Homogeneous Spaces,” Proceed-
ings of the IEEE Conference on Decision and Control, vol. 2020-Decem,
no. Cdc, pp. 5401–5408, 2020.

[14] P. van Goor, T. Hamel, and R. Mahony, “Equivariant Filter (EqF),” IEEE
Transactions on Automatic Control, 6 2022.

[15] R. Mahony, P. van Goor, and T. Hamel, “Observer design for nonlinear
systems with equivariance,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 5, pp. 221–252, 2022.

[16] A. Fornasier, Y. Ng, R. Mahony, and S. Weiss, “Equivariant Filter
Design for Inertial Navigation Systems with Input Measurement
Biases,” 2022 International Conference on Robotics and Automation
(ICRA), pp. 4333–4339, 5 2022. [Online]. Available: https://ieeexplore.
ieee.org/document/9811778/

[17] A. Fornasier, Y. Ng, C. Brommer, C. Bohm, R. Mahony, and S. Weiss,
“Overcoming Bias: Equivariant Filter Design for Biased Attitude Es-
timation With Online Calibration,” IEEE Robotics and Automation
Letters, vol. 7, no. 4, pp. 12 118–12 125, 10 2022.

[18] A. Fornasier, Y. Ge, P. van Goor, R. Mahony, and S. Weiss,
“Equivariant Symmetries for Inertial Navigation Systems,” arXiv
preprint arXiv:2309.03765, 9 2023. [Online]. Available: https://arxiv.
org/abs/2309.03765v1

[19] P. van Goor and R. Mahony, “An Equivariant Filter for Visual Inertial
Odometry,” Proceedings - IEEE International Conference on Robotics
and Automation, vol. 2021-May, pp. 1875–1881, 2021.

[20] ——, “EqVIO: An Equivariant Filter for Visual-Inertial Odometry,”
IEEE Transactions on Robotics, pp. 1–19, 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/10179117/

[21] A. Fornasier, P. v. Goor, E. Allak, R. Mahony, and S. Weiss, “MSCEqF:
A Multi State Constraint Equivariant Filter for Vision-aided Inertial
Navigation,” IEEE Robotics and Automation Letters, 1 2023.

[22] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: Part I,” IEEE Robotics and Automation Magazine, vol. 13, no. 2,
pp. 99–108, 6 2006.

[23] P. Geneva, K. Eckenhoff, and G. Huang, “A linear-complexity EKF
for visual-inertial navigation with loop closures,” Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2019-May,
pp. 3535–3541, 5 2019.

[24] P. V. Goor, R. Mahony, T. Hamel, and J. Trumpf, “A Geometric Observer
Design for Visual Localisation and Mapping,” Proceedings of the IEEE
Conference on Decision and Control, vol. 2019-December, pp. 2543–
2549, 12 2019.

[25] P. Van Goor, R. Mahony, T. Hamel, and J. Trumpf, “An Observer
Design for Visual Simultaneous Localisation and Mapping with Output
Equivariance,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 9560–9565, 1
2020.

[26] P. van Goor, R. Mahony, T. Hamel, and J. Trumpf, “Constructive
observer design for Visual Simultaneous Localisation and Mapping,”
Automatica, vol. 132, p. 109803, 10 2021.

[27] P. Van Goor, “Equivariant Filters for Visual Spatial Awareness,” 2023.
[28] D. G. Kottas, K. J. Wu, and S. I. Roumeliotis, “Detecting and dealing

with hovering maneuvers in vision-aided inertial navigation systems,”
IEEE International Conference on Intelligent Robots and Systems, pp.
3172–3179, 2013.

[29] E. Allak, A. Hardt-Stremayr, and S. Weiss, “Key-Frame Strategy during
Fast Image-Scale Changes and Zero Motion in VIO Without Persistent
Features,” IEEE International Conference on Intelligent Robots and
Systems, pp. 6872–6879, 12 2018.

[30] A. Solin, S. Cortes, E. Rahtu, and J. Kannala, “Inertial Odometry
on Handheld Smartphones,” 2018 21st International Conference on
Information Fusion, FUSION 2018, pp. 1361–1368, 9 2018.

[31] A. Ramanandan, A. Chen, and J. A. Farrell, “Inertial navigation aiding
by stationary updates,” IEEE Transactions on Intelligent Transportation
Systems, vol. 13, no. 1, pp. 235–248, 3 2012.

[32] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[33] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in IJCAI’81: 7th international joint
conference on Artificial intelligence, vol. 2, 1981, pp. 674–679.

[34] Z. Zhang and D. Scaramuzza, “A Tutorial on Quantitative Trajectory
Evaluation for Visual(-Inertial) Odometry,” IEEE International Confer-
ence on Intelligent Robots and Systems, pp. 7244–7251, 12 2018.

https://ieeexplore.ieee.org/document/9811778/
https://ieeexplore.ieee.org/document/9811778/
https://arxiv.org/abs/2309.03765v1
https://arxiv.org/abs/2309.03765v1
https://ieeexplore.ieee.org/document/10179117/

	Introduction and related work
	The visual Localization problem
	VINS symmetry
	VINS extended symmetry

	Hybrid-MSCEqF
	Equivariant persistent feature update

	Equivaraint zero velocity update
	Implementation details
	Closed-loop control
	Conclusion
	References

