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Linfeng Zhao1∗, Hongyu Li1,2∗, Taşkın Padır1, Huaizu Jiang1†, and Lawson L.S. Wong1†

Abstract— Learning for robot navigation presents a critical
and challenging task. The scarcity and costliness of real-world
datasets necessitate efficient learning approaches. In this letter,
we exploit Euclidean symmetry in planning for 2D naviga-
tion, which originates from Euclidean transformations between
reference frames and enables parameter sharing. To address
the challenges of unstructured environments, we formulate the
navigation problem as planning on a geometric graph and
develop an equivariant message passing network to perform
value iteration. Furthermore, to handle multi-camera input, we
propose a learnable equivariant layer to lift features to a desired
space. We conduct comprehensive evaluations across five diverse
tasks encompassing structured and unstructured environments,
along with maps of known and unknown. Our experiments
confirm the substantial benefits on training efficiency, stability,
and generalization.

I. INTRODUCTION

Navigation is a fundamental capability of mobile robots.
Traditional navigation approaches, such as A* [2], focus
on finding shortest-distance collision-free paths to a pro-
vided goal location in a pre-built occupancy map or known
costmap. Recently, learning-based approaches to robot nav-
igation have been proposed [3–7], which are particularly
useful when the costs or goals are not explicitly provided
and need to be learned from data. For example, in visual
navigation, the cost of navigation between locations may
depend on high-dimensional visual features, and the goal
may also need to be visually identified (e.g., “find a mug”).
As another example, in imitation learning, users may provide
information about their preferred navigation policy implicitly
via demonstrations, and the costs or optical actions need to
be learned using features from the robot’s state-action space.

While the aforementioned learning-based approaches ex-
hibit remarkable capability in handling high-dimensional
observations, they typically require a considerable amount of
data and intensive training [3, 4]. Furthermore, these methods
lack guarantees regarding generalization capabilities. In this
work, we investigate the potential benefits of Euclidean
symmetry in navigation tasks. It stems from Euclidean
transformations among reference frames, enabling parameter
sharing, enhancing efficiency, and improving generalizability.
The utilization of symmetry in navigation within the grid
world domain is explored in the earlier study by Zhao et al.
[8] (left of Fig. 1). They introduce the equivariant version of
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the value iteration network (VIN) [9] under discrete trans-
lations, rotations, and reflections, along with a differentiable
navigation planner. Their work showcases notable improve-
ments compared to baseline approaches [9, 10]. However,
they only focused on navigation in discrete 2D grids, which
limits its applicability to robot navigation.

In our work, we introduce an equivariant learning-based
navigation approach that operates on graphs in continuous
space and considers symmetry with respect to an infinitely
larger continuous group – the Euclidean group E(2) (right
of Fig. 1). Specifically, we use geometric graphs (or spatial
graphs) [11], where nodes in our graph correspond to states
(and their features) arbitrarily located in 2D space. This elim-
inates the confinement to a grid, enabling the environment
to remain non-discretized and permitting variable resolution.
This also helps when the robot’s motion deviates from grid-
like patterns. Moreover, our approach accounts for con-
tinuous rotational symmetry, enhancing learning efficiency
compared to discrete symmetry like Dihedral group D4.

However, to exploit Euclidean symmetry in graph-based
navigation, we need to solve two major challenges. First,
previous work on 2D grids exploited the grid nature of their
problem and used standard 2D symmetric convolution, which
is no longer applicable in our case. Instead, we derive a
new E(2)-equivariant message-passing version of VIN and
validate that it satisfies our notion of symmetry. Second, to
capture symmetry in visual inputs/features, previous work
relied on a very specific setup. As illustrated in Fig. 1,
the agent was assumed to have four cameras, each situated
90◦ apart, exactly matching the D4 symmetry being con-
sidered, such that a group transformation (rotation) can be
implemented as a permutation to the four images. Extending
this approach directly to E(2) would technically require an
infinite number of cameras (or at least an infinite-resolution
panoramic camera). We lift this restriction by introducing
a learnable equivariant layer that can take images from a
camera array conforming to a subgroup of E(2) (such as
D8) and lift their features to become E(2)-equivariant.

We empirically demonstrate the effectiveness of our ap-
proach on various navigation environments, including 2D
grid, 2D geometric graphs, and Miniworld visual navigation
[12] on both grid and graph. Moreover, in demonstrating
its potential suitability for semantic goals and real-world
environments, we provide a proof-of-concept experiment on
semantic navigation tasks in the Habitat simulator [13].
Among these studies, we observe a consistent improvement
in learning efficiency and stability. Overall, our study pro-
vides insight into the application of equivariance in naviga-
tion and the challenges. Our contributions are three-fold:
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Fig. 1: Illustration of rotation equivariance. We provide a side-by-side comparison with SymVIN [8]. We use the blue arrow to show
the orientation of the robot. Rotating the robot ⟳ 90◦ is equivalent to rotating the world frame ⟲ 90◦. When camera views are cyclically
permuted, action output (red arrow) is transformed by a rotation matrix. The state space of SymVIN (left) is confined to the grid, and it
only produces discrete actions. Our approach acts on continuous 2D space and produces R2 actions.

• We study the equivariance properties of 2D navigation
and identify the two challenges.

• To address the challenges, we (1) derive the geometric
message passing (MP) version of value iteration on
geometric graphs and (2) propose using a learnable
equivariant layer that converts multi-camera images to
desired feature space, respectively.

• We demonstrate the empirical performance of navi-
gation on Grid World (2D grid), Graph World (2D
geometric graphs), and Miniworld visual navigation
on both grid and graph. We provide proof-of-concept
results on semantic navigation in Habitat simulator.

II. BACKGROUND AND PROBLEM FORMULATION:
NAVIGATION AS GEOMETRIC GRAPHS

Definition. We approach navigation as a 2D continuous
path planning problem, building upon the 2D discrete grid
version introduced in [8, 9], while extending it to the uti-
lization of the geometric graph G = ⟨V, E⟩ in 2D Euclidean
space R2. In navigation tasks, the agent observes a state
st ∈ S at each step, and the action is to move on the
2D plane at ∈ A = R2. State st can be a 2D position
in R2 or egocentric panoramic images in RK×H×W (where
K denotes the number of images of resolution H×W )1. To
convert the task into a geometric graph, each node vi ∈ V
corresponds to a state s ∈ S and is associated with a node
feature hi (such as images) and has a position xi ∈ R2.
It is also possible to use edge features2. In this paper, we
focus on addressing the global planning problem: given a
navigation task (state s and target w) as a feature field/map
M , we output action field Π = Planθ(M).

Geometric Structure. The navigation problem can be de-
fined as a MDP, and an inherent geometric structure emerges:
it can be conceptualized as a geometric graph (defined above)
situated within a 2D Euclidean space. Specifically, this graph
can be transformed through 2D Euclidean isometric symme-
tries, without impacting the optimal solution of the MDP
[8, 14]. The set of all such transformations in 2D is called
Euclidean group E(2), which can be uniquely decomposed
into translation part R2 and rotation/reflection part O(2),
denoted as semi-direct product ⋊: E(2) = R2 ⋊ O(2)

1We omit image RGB channel for notation simplicity.
2Similarly, each edge eij ∈ E corresponds to a state-action transition

(s,a) ∈ S × A and has an edge feature ∈ Rce (such as distance or
movement cost).

[15, 16]. We only require the node features h (and edge
features) are transformable by a subgroup G ≤ E(2). Fol-
lowing the notation in [16], we denote the rotation/reflection
symmetry part as compact symmetry group G ≤ GL(2),
because translation group is not compact and many useful
theorems do not hold. In our implementation, translation
equivariance is achieved by using relative position. For any
subgroups G of rotation/reflection, its equivariance needs
group convolution [15] or steerable convolution [17].

Value Iteration and Symmetry. When symmetry appears
in an MDP, the value and policy functions are equivariant
[8, 14]. Abstractly, we can write value iteration (VI) as
iteratively applying the Bellman operator T : Vt 7→ Vt+1:

Qt(s,a) := R(s,a) +

∫
R2

ds′P (s′ | s,a)V (s′),

Vt+1(s) = max
a

Qt(s,a),
(1)

where the input and output of the Bellman operator are
both value function V : S → R. Specifically, s ∈
S,a ∈ A, R(s,a), P (s′ | s,a) represent the states, actions,
rewards, and transitions, respectively. In VIN, VI(M) =
T k
M [V0] is executed k times, which takes an initial value

V0 and the map M (with a goal) as input

g · VI(M) ≡ g · T k
M [V0] = T k

M [g · V0] ≡ VI(g ·M).
(2)

Zhao et al. [8] explore the equivariance for a 2D grid case.
We extend it to geometric graph: T is performed on a graph,
which is implemented using message passing.

Symmetry Transformations. In this paragraph, we unify
the concepts presented in the preceding two paragraphs to
demonstrate the implementation of equivariance constraints,
which establish equivalence between transformed and origi-
nal input/output [15, 17, 18]. Under the group transformation
g, a (left) regular representation Lg transforms a feature map
with cout-dimensional vector (vector field) f : X → Rcout

as [11, 17, 18]:

[Lgf ] (x) =
[
f ◦ g−1

]
(x) = ρout(g) · f

(
g−1x

)
, (3)

where ρout is the G-representation associated with output
Rcout . For example, for action feature map Π : R2 → R2

(i.e., every position x ∈ R2 is associated with a relative 2D
movement), rotating the vector needs a 2×2 rotation matrix.



III. METHODOLOGY: EQUIVARIANT MESSAGE PASSING
FOR VALUE ITERATION

Following the spirit of VIN, we build a geometric message
passing network and extend it to learning value iteration
on geometric graphs: Π = Planθ(M). Given that the
input feature map M and the resulting action map Π are
both amenable to transformation within the same group, we
enforce equivariance constraints throughout the MP network
(shown in Fig. 1): g ·Π = Planθ(g ·M).

A. Message Passing Value Iteration Networks (MP-VIN)

Regarding the value iteration process, our MP-VIN is
analogous to the original VIN formulation. However, what
sets our approach apart is the improvement brought about
by the inclusion of the geometric graph using an equivariant
message passing layer (discussed in the next section). There
are two advantages of using graph format: (1) cover the envi-
ronment with irregular graphs to achieve variable resolution,
and (2) output continuous actions.

B. O(2)-Equivariant Message Passing Layer: Equivariant
Value Iteration on Graph

Discretization to Graph. We could employ standard 2D
convolution on regular grids for value iteration, as seen
in VIN. However, irregular graphs render grids unsuitable.
In the prior study of Niu et al. [19], an earlier iteration
of graph convolution was employed. However, it exhibited
equivariance only with respect to R2 translations, and it
did not encompass considerations for rotation or reflection
symmetries (O(2)). Here, we derive from first principles
using the original continuous form of value iteration.

The integral term in VI can be written as a mapping Φ

h′(x) = Φ[h](x) =

∫
R2

K(x,x′)h(x′), (4)

where K : R2 × R2 → Rcout×cin is the kernal function 3.
h : R2 → Rcin and h′ : R2 → Rcout are input and output
feature map. If translation equivariance is desired, the kernel
can be further simplified from two-argument to one-argument
case, and the mapping is convolution [8, 20]. The continuous
steerable convolution ⋆ is defined (via cross-correlation) by
[16–18]:

h′(x) = [K ⋆ h] (x) =

∫
R2

K(x′ − x)h(x′), (5)

where K : R2 → Rcout×cin is a (steerable) kernel.
If we sample nodes in R2 and construct edges by transition

S×A, the continuous convolution on R2 can be discretized,
which is similar to strategy of PointConv [21] 4. We use
nonlinear message passing to replace linear convolution. We

3Note that the kernel K here is different from the notation K we use to
represent the number of images.

4Brandstetter et al. [21] discuss other strategy for 3D steerable messsage
passing, which expands the feature maps to spherical harmonics. Analo-
gously, it is possible to expand the features to cyclic harmonics.

use two MLPs for computing messages (propagateθ) and
updating node features (updateθ), and has form

mij = propagateθ (hi,hj ,xi,xj) ,

h′
i = updateθ

hi,
∑

j∈N (i)

mij

 .
(6)

Implementation of Equivariance. We implement E(2)-
equivariant message passing on the graph that is equivariant
under two parts:

Translation R2. In the plannar convolution on 2D grid, it is
known to be equivariant to translation because it only relies
on relative position between two cells as input and never
takes absolute coordinates. Analogously, we use relative
position between nodes xi − xj as input to the message
passing function [21]:

mij = propagateθ (hi,hj ,xi − xj) . (7)

It is a direct generalization of translation-equivariant 2D
convolution that relies only on relative positions or local
coordinates (shown in Eq. 5), allowing generalization to
larger maps.

Rotation and Reflection O(2). We use steerable equivariant
network to implement O(2)-equivariance [15–17, 20, 21].
The O(2) group is compact and thus its representations
are decomposable into irreducible representations [16, 18],
thus convolutions can be performed in Fourier domain and
more efficient. We use it to build equivariant MLPs of
propagate and update (effectively 1 × 1 convolution).
The kernel K of G-steerable convolution needs to satisfy
constraint [16, 18], where G can be any (discrete) subgroup
of O(2):

K(gx) = ρout (g) ◦K(x) ◦ ρin (g)
−1 ∀g ∈ G, x ∈ R2,

(8)
where ρin and ρout stand for representations of the layer’s
input and output, respectively. This kernel constraint guaran-
tees that the layer is G-equivariant: K(gx)ρin (g) = ρout (g)◦
K(x). We refer the readers to Weiler and Cesa [16], Cohen
and Welling [17] for more details.

C. CK-Equivariant Lifting Layer: Processing Camera Array

In the previous section, we extend from discrete symmetry
in SymVIN to continuous symmetry, such as continuous
rotations SO(2). Injecting such equivariance into the entire
network requires us to know how to continuously rotate
sensory input by g ∈ SO(2). This can be naturally achieved
by two types of observations: (1) 360◦ point cloud input
from a LiDAR (naturally continuous) or (2) 360◦ cylindri-
cal camera. However, (1) may not seamlessly incorporate
semantic information from RGB images, and (2) is hard to
obtain and process. Thus, we need to relax this requirement
of the SO(2)-transformable input modality. As a solution,
we introduce a learnable layer lift that can map camera
images from different views to a SO(2)-transformable fea-
ture. This enhances our ability to exploit symmetry in the
planning process.



TABLE I: Averaged test success rate (%) with standard deviation. The best result is bolded. The second-best result is underlined.

Method Grid World Graph World Miniworld
15× 15 27× 27 128 nodes 256 nodes Grid Graph

VIN [9] 78.51±1.81 50.15±3.94 18.75±1.95 20.09±6.87 57.14±8.92 18.90±2.87

SymVIN [8] 95.85±5.02 93.73±7.33 24.40±2.11 27.53±4.73 91.67±2.58 27.98±4.34

MP-VIN (No Sym) 87.07±4.53 55.99±39.56 63.10±17.26 54.76±3.29 − −
MP-VIN: D8 87.19±2.78 38.53±16.17 52.38±5.02 32.89±3.47 − −
MP-VIN: R2 90.81±1.02 72.45±31.94 70.24±2.69 58.33±5.93 79.76±24.06 96.58±2.46

MP-VIN: R2 ⋊D8 91.50±1.04 84.52±6.04 72.17±5.08 61.90±5.33 90.89±1.63 96.96±1.00

Although the output is SO(2)-transformable, the left side
is only C4-transformable, so the layer lift can only be
restricted to be C4-equivariant. The restriction from G =
SO(2) to subgroup H = C4 is called restricted represen-
tation. This layer is a special kind of equivariant induction
layer [22]. It can lift features on a subgroup H ≤ G to a
group G and is H-equivariant. Intuitively, it needs to satisfy
the equivariance constraint only for ⟲ 90◦ ∈ C4, which is a
subgroup C4 ≤ SO(2):

lift(⟲ 90◦ · images) =⟲ 90◦ · features, (9)

where we assume 4 images and output SO(2) features, while
it can be any group such that C4 is its subgroup.

IV. EXPERIMENTS

We evaluate our proposed approach MP-VIN and baselines
on four different tasks. Among these tasks, we perform
point goal navigation under different environments: known
structured environments (Grid World), known unstruc-
tured environments (Graph World), unknown structured
environments (Miniworld), and unknown unstructured en-
vironments (Miniworld-Graph).

Methods. We experiment four variants of our methods,
with or without translation (R2) or rotation/reflection (using
G = D8 ≤ O(2)) equivariance: No-Sym, D8, R2, and R2 ⋊
D8. We use two grid-based methods: VIN [9] and SymVIN
[8] (with D4-equivariance).

A. Planning on known maps: Grid World

Results. In terms of absolute performance gain, by adding
D8 symmetry to MP-VIN with R2, we obtain another 0.69%
and 12.07% success rate on the 15 × 15 and 27 × 27
mazes, respectively. However, it is still outperformed by
SymVIN, which uses steerable 2D convolution to process
the input. It is reasonable as it directly uses the regular grid
structure, while our graph version can handle unstructured
grpahs and is more expressive, while we apply both of
them on grid maps. When the map size increases, MP-
VIN with R2 ⋊D8 symmetry demonstrates the second-least
performance degradation, showing better generalization to
larger maps.

4One solution for D4 group is to use quotient representations, but it not
generally applicable for higher-degree rotations such as D8 or infinitesimal
rotations SO(2).

B. Planning on known graphs: Graph World

Results. The graphs generally do not have regular struc-
ture, i.e. four neighbors only in four directions. Thus, all
methods encounter performance degradation, while grid-
based methods struggle more in such unstructure graphs.

C. Mapping and planning under unknown maps: Miniworld

Results. Since this task is based on a 15 × 15 grid
using visual observations, the experiment results are simi-
lar to the Grid World. MP-VIN with R2 ⋊ D8 symmetry
demonstrates higher learning efficiency than MP-VIN with
only R2 symmetry and VIN. However, every method faces
a performance drop due to the mapping uncertainty. We
observe that the performance gap of MP-VIN with R2 ⋊D8

symmetry (0.61%) is lower than that of SymVIN (4.18%).
Therefore, the performance gap between MP-VIN with R2⋊
D8 symmetry and SymVIN becomes narrower.

D. Mapping and planning under unknown graphs:
Miniworld-Graph

Results. Similar to the Miniworld experiment on grid rep-
resentation, we observe the MP-VIN with R2⋊D8 symmetry
has higher learning efficiency than MP-VIN with only R2

symmetry. Grid-based approaches suffer in this task since
it is hard for CNN to process the expressive unstructured
environment, also indicated in the previous Graph World
experiment. In both Miniworld experiments, we observe that
MP-VIN with R2 ⋊ D8 symmetry has a much smoother
learning curve and lower variance than MP-VIN with only
R2 symmetry. This indicates that by adding R2 symmetry,
we could further optimize the network with better stability.

V. CONCLUSION

In this paper, we explored the applicability of exploiting
Euclidean symmetry within the context of a navigation plan-
ner. We contributed a novel equivariant differentiable planner.
The effectiveness of the proposed approach is extensively
assessed across four distinct tasks involving structured and
unstructured environments, with known and unknown maps.
The empirical findings demonstrate a significant enhance-
ment in learning efficiency when Euclidean symmetry is inte-
grated into 2D navigation planning. Furthermore, the results
indicate that leveraging Euclidean symmetry yields more
stable optimization and yields superior overall performance.
In the future, we hope to extend our work to navigation task
that has higher dimension, such as semantic navigation [3–5].
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