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Abstract—Equivariant filters (EqFs) are on the rise for robotic
localization applications. In its design derived from the extended
Kalman filter (EKF), the EqF provides many advantageous
properties, though they grow in design complexity with multiple
sensors. Each state added to the filter necessitates new derivations
for corresponding symmetries and group actions. This paper
presents a basic setup – the building blocks – for future
equivariant filter design. We outline the symmetries and group
actions for all possible rigid-body calibration states (rotational,
translational, and pose) and states for direction vectors and height
sensor biases. These fundamental components enable equivariant
multi-sensor fusion for UAVs equipped with the most common
sensors, such as GNSS, magnetometer, pressure sensor, or loosely
coupled pose sensors (e.g., vision). Our results demonstrate such
a multi-sensor EqF.

I. INTRODUCTION AND RELATED WORK

In recent years, a new type of filter-based estimation has
emerged: the equivariant filter (EqF). Originally introduced
by van Goor et al. [1], [2], this filter is an extension of the
well-known extended Kalman filter (EKF), which introduces
an equivariant symmetry group to perform estimation on. This
group change comes with a set of advantageous properties:
guaranteed convergence, consistent estimation, and better error
linearization, to name just a few. Compared to other state-of-
the-art filters like the invariant EKF (IEKF) [3], EqFs can
more efficiently include additional states such as bias terms
or calibrations on the symmetry group and thus inherit the
aforementioned properties for these states as well [4].

Brommer et al. [5] introduced a state-of-the-art truly modu-
lar method for EKF-based multi-sensor localization, extending
the insights of Lynen et al. [6]. To the knowledge of the
authors, many more methods for multi-sensor localization
exist [7], but do not facilitate modularity. In addition, other
filters such as the better performing TF-IEKF by Baurrau and
Bonnabel [8] do not consider a multitude of additional cali-
bration or sensor states, but rather individual sensor setups [9],
[10].

The theory suggests EqFs should be the choice of filter
for uncrewed aerial vehicle (UAV) localization [4]. However,
their derivation can be quite complex, especially when a
multitude of sensors, such as global navigation satellite system
(GNSS) sensor, magnetometer, or pressure sensor, are used.
Recent examples of equivariant filters for inertial navigation
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TABLE I
SENSOR STATES AND MEASUREMENTS

Magnetometer ξM (S,m) ∈ SO(3)× R3

hM (ξ) (GRIS)
Tm ∈ R3 \ {03}

Position ξT t ∈ R3

hT (ξ) GRT
I

(
π − (GpI + GRI t)

)
∈ R3

Velocity ξV t ∈ R3

hV (ξ) GRT
I

(
ν − (GvI + GRI t

∧ Iω)
)
∈ R3

Pose ξP L ∈ SE (3)
hP (ξ) PL ∈ SE (3)

Pressure ξH (t, h) ∈ R3 × R
hH (ξ) eTz (

GpI + GRI t) + h ∈ R

system (INS) provide single and individual derivations for,
e.g., attitude estimation [11], (multi) GNSS estimation [12],
[13], or tightly-coupled visual-inertial odometry (VIO) [14],
[15]. Yet, combining the filter derivation of these separate
works is not straightforward.

Therefore, with this paper, we introduce a general guide on
equivariant filter design for robotic systems in 3D space. By
providing the basic building blocks for core navigation states,
rigid-body calibration states, and common UAV sensor modal-
ities, we aim to provide a basis for future, simpler equivariant
estimation. The measurement functions and additional states
considered for estimation are presented in Table I.

II. MULTI-SENSOR BIASED INS
This section introduces the biased INS for multi-sensor

setups problem using the mathematical expression of our
previous works [4], [12], [15]. For additional sources on
equivariant filters, symmetry groups, and Lie algebra we refer
the interested reader to [1], [16], [17].

A. Core Navigation State

For the equivariant theory and system modeling, it is easier
to use the matrix notation of Lie groups (where applica-
ble). Therefore, by considering ξC = (T, b) ∈ CM :=
SE2(3) × R9 to be the core state space of the system,
with the extended pose T = (R, v, p) ∈ SE2(3) and
biases b = (bω, ba, bν) ∈ R9, and defining the input
u = (u, τ ) ∈ L ⊂ R18, with u = (ω , a, ν ) ⊂ R9 and
τ = (τω, τ a, τ ν) ⊂ R9, we can write the systems dynamics
in the following matrix form

Ṫ= T(W − B + N) + (G − N)T, (1a)
ḃ= τ , (1b)

where, W = u∧, and B = b∧. G and N are defined
according to [15].



B. Sensor Models

1) Magnetometer: A magnetometer measures the magnetic
field direction m ∈ R3 \ {03} in the sensor frame. Given that
the sensor frame might not align with the inertial measurement
unit (IMU) frame, an additional calibration state S ∈ SO(3)
is introduced to generate the following sensor measurement

hM (ξ) = (RS)Tm = yM ∈ MN ⊂ R3. (2)

The dynamics for these additional states can in general be
defined with the arbitrary inputs uS ∈ SL ⊂ R3 and um ∈
mL ⊂ R3:

Ṡ = Su∧
S , and ṁ = um . (3)

2) GNSS: Global navigation satellite system sensors can
provide both position and velocity information. They also
require a calibration for the translation t ∈ R3 between the
sensor frame and the IMU frame. In general, the measurements
are modeled as

π = Rt + p, and τ = v + Rt∧ω ,

for position and velocity, respectively. However, these mea-
surement models cannot produce an transitive right output
action. Therefore, we reconstruct the measurement function
to measure ideally 0d in a body-centric formulation

hT (ξ)= RT
(
π − (p + Rt)

)
= yT ∈ TN ⊂ R3, (4)

hV (ξ)= RT
(
τ − (v + Rt∧ω)

)
= yV ∈ V N ⊂ R3. (5)

Similar to the rotational calibration, if it is added as a state,
the dynamics for the translational calibration are

ṫ = ut , (6)

with ut ∈ tL ⊂ R3.
3) Pose Sensor: Pose sensors measure the 6-DoF pose of a

vehicle within a navigation frame. For this work, we consider
that this navigation frame coincides with the global frame
through a static, known calibration. Additionally, a pose sensor
can have an rigid body calibration L :=

(
LR, Lp

)
∈ SE (3)

between the sensor frame and IMU frame. The measurement
function and eventual dynamics are then

hP (ξ) = PL = yP ∈ PN ⊂ R4×4, (7)

L̇ = Lu∧
L , (8)

where P is the SE (3) pose of T, i.e. P = θ (T), and uL ∈
LL ⊂ R6 is an arbitrary input.

4) Pressure Sensor: Generally pressure sensor models de-
pend on the medium they are used in, for robotics either
barometric or liquid pressure. To simplify the usage of this
sensor for any robotic platform, within this letter we consider
the pressure sensor as a 1D height sensor with respect to a
specific reference frame (typically sea level). However, the sea
level rarely coincides with the z-origin of the global navigation
frame, and therefore an additional “bias” term h ∈ R needs to
be added to the state. Further, t ∈ R3 represents the calibration

between the sensor and the IMU, and ez ∈ R3 is the unit
vector in z-direction,

hH (ξ) = eT
z (p + Rt) + h = yH ∈ HN ⊂ R. (9)

III. STATE SYMMETRIES

In multi-sensor equivariant filter design, it is desirable to
find state-independent symmetry groups to allow modular
sensor suits. Indeed, it is possible to define all additional
symmetries and group actions independently of each other,
with the exception of the core state symmetry. However, this
does not introduce any problems, as the core state needs to be
tracked anyway, regardless of the sensor type. Therefore, we
first present the biased-INS symmetry and then the derived,
individual state symmetries, based on the states introduced in
the section above.

A. Core Navigation State Symmetry

Let the symmetry group of the core state be the tangent
group as defined in [4], CG := SE2(3) ⋉ se2(3). Let XC =
(D, δ) ∈ CG be an element of the symmetry group, with
D = (A, a, b) ∈ SE2(3). The inverse element is given by
X -1 =

(
D-1, 9AdD-1 [δ ]

)
with D-1 = (AT, 9ATa, 9ATb), and

the identity element of G is id =
(
(I3,03×1,03×1) ,0

∧
9×1

)
∈

CG.

Lemma 3.1. The right state group action of CG on CM,
ϕ : CG × CM → CM and the right input group action of
CG on CL, ψ : CG × CL → CL, are defined as

Cϕ (X, ξ) :=
(
TD,Ad∨

D-1(b − δ)
)
, (10a)

Cψ (X, u) :=
(
Ad∨

D-1(uT − δ) + Ω(D), (10b)

Ad∨
D-1(ub)

)
,

with Ω(D) as defined in [4].

To lift the dynamics of (1) onto the symmetry a system lift
is further required:

Lemma 3.2. The lift Λ : CM × CL → CG is defined as

CΛD (ξ, u) = T(W − B + N) + T-1(G − N)T,(11a)
CΛδ (ξ, u) = ad∨

b(ΛD (ξ, u))− ub , (11b)

where ΛD and Λδ refer to the lifted elements for D and δ of
XC , respectively.

In what follows we will briefly introduce the symmetry
groups, actions, and lifts for the three types of calibration
states, rotational, translational, and pose. A summary for these
states is presented in Table II.

B. Calibration State Symmetries

Given S, t, and L for the rotational, translational, and
pose calibration, the corresponding symmetry elements can
be defined as E ∈ SO(3), ϵ ∈ R3, and F ∈ SE(3). The
properties of the symmetry elements are presented in Table II.



TABLE II
ADDITIONAL SENSOR STATES

STATE State ξ ∈ M Input ∈ L Dynamics dξ
dt

Symmetry Group G SG Element X Inverse X -1 Multiplication XY

Rotational S ∈ SO(3) uS ⊂ R3 Su∧
S

CG × SO(3) E ET EXEY

Translational t ∈ R3 ut ⊂ R3 ut
CG ⋉ R3 ϵ 9ATϵ AX ϵY + ϵX

Pose L ∈ SE (3) uL ⊂ R6 Lu∧
L

CG × SE(3) F F -1 FXFY

Direction m ∈ R3 \ {03} um ⊂ R3 um
CG × SOT(3) Q Q-1 QXQY

Height Bias h ∈ R uh ⊂ R uh
CG × R k 9k kX + kY

Lemma 3.3. The symmetry group actions iϕ : iG× iM →
iM for the rotational, translational and pose calibration states
are defined as

rϕ (X, ξ) := ATSE, (12)
tϕ (X, ξ) := AT(t − ϵ), (13)
pϕ (X, ξ) := C -1LF , (14)

respectively. C := θ (D) = (A, b) ∈ SE(3) is the pose of the
core symmetry element.

Lemma 3.4. The input actions iψ : iG × iL → iL for
the rotational, translational, and pose calibration states are
defined as

rψ (X, u) := Ad∨
ET(uS), (15)

tψ (X, u) := ATut , (16)
pψ (X, u) := Ad∨

F -1(uL). (17)

Lemma 3.5. The lifts iΛ : iM × iL → iG for
the rotational, translational, and pose calibration states are
defined as

rΛE (ξ, u) := ST(ω − bω)
∧S + u∧

S , (18)
tΛϵ (ξ, u) := t∧(ω − bω)− ut , (19)

pΛF (ξ, u) :=
(
Ad∨

L-1(θ
(

T
Λ (ξ, u)

)
) + uL

)∧
. (20)

The proof for these actions and lift follows our previous
works [12], [15], [18].

C. Additional Sensor Symmetries

1) Magnetometer: Given that the magnetic world vec-
tor m is observable [19], an additional symmetry element
Q :=

(
RQ, cQ

)
∈ SOT(3) for the magnetic vector can be

added, using the SOT(3) group [14]. Further, we assume a
calibration state S and symmetry element E to be present.

Lemma 3.6. The group action, input action, lift, and config-
uration output for the magnetometer’s additional states are

defined as
mϕ (X, ξ) := RSEQ-1(RS)Tm, (21)
mψ (X, u) := EQ-1, (22)

mΛR
Q
(ξ, u) := rΛE (ξ, u)−

(RS)T(m∧um)

∥m∥2
, (23a)

mΛc
Q
(ξ, u) :=

mTum

∥m∥2
, (23b)

Mρ (X, y) := Q-1y. (24)

2) Pressure: Similar to the direction sensor, the reference
offset h of the pressure sensor can be added as a state with
the corresponding symmetry element k ∈ R.

Lemma 3.7. The group action hϕ, input action hψ , and lift
hΛ for the pressure sensor’s additional states are defined as

hϕ (X, ξ) := h + k, (25)
hψ (X, u) := uh , (26)
hΛ (ξ, u) := uh . (27)

While this symmetry does provide input equivariance, no
right equivariant output action can be found. While there exist
other symmetries that can provide an equivariant output action,
they come at the cost of input equivariance. In practice, this
results in the propagation step being non-equivariant and thus
requires a different derivation for the below presented filter
equations. However, since the update is sensor-wise decoupled,
having a different derivation for this sensor’s update step does
not require a different derivation for the other sensors, and
thus is favorable to have in multi-sensor scenarios.

3) Position, Velocity, and Pose Sensor: Apart from the
calibration, these sensors do not introduce any additional state.

Lemma 3.8. The configuration outputs iρ : hN → hN for
the position, velocity, and pose sensor are defined as

Tρ (X, y) := AT(yT − b + ϵ), (28)
V ρ (X, y, u) := AT(yV − a + ω∧ϵ), (29)

Pρ (X, y) := yP F . (30)

IV. EQUIVARIANT FILTER DESIGN

The equivariant filter is based on the EKF in its design [1].
Let X̂k ∈ G be the estimate on the symmetry group at time
tk, and Σk ⊂ Rn×n be its covariance matrix, with n = dimG.
We make the choice of using normal coordinates as local coor-
dinates ε for the global equivariant error e := ϕ

X̂-1 (ξ), hence



Fig. 1. Error plots for the position and attitude results for the Mars 5 trajectory
from the Insane dataset, comparing the performance of our EqF (red) and the
MEKF of [5] (green).

ε = ϑ (e) := logG(ϕ-1
ξ (e))∨ ∈ Rn with logG : G → g

being the logarithm of the symmetry group. Then the error
dynamics can be defined as

dε= A0
t εdt+ Btdµu , (31a)

dỹ= C⋆
t εdt. (31b)

In full equivariant systems the matrices can be derived
with [17]. The filter implementation then extends [13] with
the additional sensor modalities and updates.

V. RESULTS

We implemented the presented EqF1 with each of the sensor
modalities as shown in Table I being used once. Our filter is
then tested using the Insane dataset [20], as it provides all
presented sensors on various different UAV flights.

In Fig. 1 the position and attitude error is displayed using the
provided ground truth of the dataset. As the EqF is initialized
with the core states set to identity the attitude experiences a
slightly longer transient phase. We compare it to the truly-
modular multiplicative EKF (MEKF) MaRS [5], which has
the same states and estimates enabled as the EqF.

Additionally, the auxiliary state estimates for two GNSS
sensors, a magnetometer, and a pressure sensor are displayed
in Fig. 2. As can be seen, the calibration states converge rather
fast. Further, the magnetic world vector is estimated correctly,
while the pressure bias can handle the noisy and drift-effected
measurements of the pressure sensor.

VI. CONCLUSION

With this paper we presented the building blocks of an
equivariant filter for UAV localization using various sensor
modalities. We introduced additional tracking states, symmetry
group actions, and dynamics lifts required for such a filter and
showed it’s performance using the Insane dataset.

1Source code will be made available on GitHub with full paper publication.

Fig. 2. Auxiliary state estimates of the presented EqF (solid lines) compared
to the ground truth values (dashed lines). For the calibration states and
magnetic vector the colors red, green, and blue represent the x, y, and z
axes, respectively.
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