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Abstract— Symmetry manifests itself in legged locomotion in
a variety of ways: A legged system can maintain consistent
gaits from any spatial starting point, exhibiting the same leg
movements on either side of the torso in phase, and some
even demonstrate forward and backward movements so similar
they seem to reverse time. This work aims to generalize these
phenomena and proposes formal definitions of symmetries in
legged locomotion using terminology from group theory. In this
research, we uncovered an intrinsic connection among a broad
spectrum of quadrupedal gaits, which can be systematically
identified via numerical continuations and distinguished by
elements within a symmetry group. These gaits, within the
hybrid dynamical system, are not merely isolated movements
but part of a continuum, seamlessly transitioning from one
to another at precise parameter bifurcation points. Altering
specific symmetries at these junctures leads to the emergence
of distinct gaits with unique footfall patterns, a phenomenon
we’ve generalized through dimensional analysis in this study.
Consequently, each gait manifests distinct preferred speed
ranges and specific transition speeds.

I. INTRODUCTION

The concept of symmetries has been widely used in the
research of legged locomotion in order to reduce the com-
plexity of the study, reveal fundamental differences among
all gaits, and design locomotion controllers for legged robots.
For example, Hildebrand (1965) used the phase delays
among the leg pairs (front or hind) to categorize all the
quadrupedal gaits [1]. If the phase delay in the gait is
equal to half of the stride cycle, he called it a symmetrical
gait; otherwise, an asymmetrical gait. He suggested that all
the symmetrical gaits and asymmetrical gaits formed two
distinct continua [2] and animals like horses can smoothly
switch from one gait to another if they are closely related.
Another type of symmetry was brought up by Marc Raibert
(1986) from his early studies of running legged robots, in
which he found when the robot was moving backward,
it was almost the same as moving forward in a time-
reversed fashion [3]. More recently, Razavi et al. (2017)
introduced a new method to design stable periodic walking
gaits for legged robots based on producing a type of odd-
even symmetry in the system [4]. This approach can identify
symmetries in the system dynamics and generate periodic
walking without relying on any kind of numerical search.
And the study of symmetries has been proven useful for
data-driven analysis of robotic systems [5]. By recognizing
and exploiting data symmetries through the use of invariant
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Fig. 1. (A) A1 quadrupedal robot from Unitree Robotics with bilateral
symmetry and (B) a simplistic spring-mass model.

neural networks (NN), symmetry constraints can lead to
better sample efficiency and reduce the number of trainable
parameters. In this study, we try to leverage the existing
studies of symmetries in legged locomotion [6] and group
theory [4] and seek to understand the inherent relationships
among the large number of asymmetrical gaits observed by
Hildebrand [7].

II. METHODS

Symmetries of mechanical systems are natural examples
of group actions, and they often provide a useful mechanism
to reduce the complexity of the problem by reducing the
number of variables. The motion of a legged system can
be modeled as a hybrid system Σ that consists of a set of
differential-algebraic equations F describing the continuous
dynamics of the robot in each domain and a set of impact
maps ∆ that instantaneously reset the velocities. The global
behavior of such systems has been explored in the literature,
notably in [4], [8]. In this work, in order to focus on
quadrupedal locomotion with diverse footfall patterns, we
conduct a local symmetry analysis on the periodic solutions
of such systems. A gait of a legged system is defined as:

Definition 1 (Gait): Suppose the equations of motion of
a quadrupedal robot can be modeled as a continuous time
(t ∈ R) hybrid system Σ(t) on phase space X , where
x ∈ X ,x(t):= [q(t)⊺, q̇(t)⊺]

⊺. It is also assumed that in each
stride every leg is limited to a single strike and lift-off. The
dynamics of Σ(t) is given by an evolution operator φt(X →
X ) : x(τ) 7→ x(τ + t). We consider a gait of a legged robot
as a periodic orbit O ⊂ X i.e., there exists a finite T > 0
such that O = {x(t) |Sx(t) = SφT (x (t)) = Sx(t+ T )},
where S = diag(0, 1, 1, 1...) is the selection matrix, which
excludes the horizontal position qx from the periodicity.

In this definition, we assume the evolution operator φt is
unique in both forward time (t > 0) and backward time (t <
0). Given this assumption, we generalize the symmetries of
gaits through group theory, defining a symmetry as a group



action that transforms one gait into another:
Definition 2 (Symmetry): For any gait O, the symmetries

form a group G. A symmetry of G on the gait O is an
assignment of a function Sg : O → O to each element
g ∈ G in such a way that:

• If I is the identity element of the group G, then SI is the
identity map, i.e., for every gait O we have SI(O) = O.

• For any g, h ∈ G, we have Sg◦Sh = Sgh, i.e., for every
gait O, we have Sg (Sh(O)) = Sgh(O);

• For any g ∈ G, there exists the inverse of g such that
Sg ◦ Sg−1 = SI ;

1) Temporal Symmetry: Since gaits are periodic, starting
from any point on the orbit, all states will return to their
original value after every T seconds. This gives us the first
kind of discrete symmetry about time. The periodicity of the
states also suggests the conservation of linear and angular
moment in each direction over every T second.

Definition 3 (Temporal Symmetry): Suppose there are no
energy losses related to the impact map ∆, there exists a
finite T > 0 and specific timings t = nT (n ∈ Z+), and
the evolution operator φt forms a subgroup named temporal
symmetry φnT such that φt1 ◦φt2 = φt1+t2 for all t1, t2 ∈
nT and φ−1

t = φ−t, in which −t corresponds to reversing
the motion and rewinding time for every gait. Specifically,
assume a state vector on the orbit takes the form x(t) =
[qT (t)

⊺, qL(t)
⊺, q̇(t)⊺T , q̇(t)

⊺
L]

⊺ ∈ O, the temporal symmetry
is a function Sφ : x(t) → x(t):

Sφ : [qT (t)
⊺, qL(t)

⊺, q̇T (t)
⊺, q̇L(t)

⊺]
⊺
, (1)

7→φnT [qT (t)
⊺, qL(t)

⊺, q̇T (t)
⊺, q̇L(t)

⊺]
⊺

Even though once a gait is identified, in theory, we can
always rewind the time and find the inverse mapping of
the evolution operator, in reality, this process is usually
nonphysical and cannot be realized on the hardware. Under
the presence of damping, friction, or collisions, the reverse
mapping requires the legged system to reverse the energy
flow and absorb energy from its environment. Additionally,
when the projection ∆ is non-invertible, the solutions of
a hybrid system are often not unique in backward time.
However, it has been commonly observed that both humans
and quadrupedal animals utilize similar gaits when moving
both forward and backward [3]. Also, as a theoretical study,
this is still a very interesting phenomenon for many idealized
energetically conservative models, such as SLIP models
proposed in the previous section. Here we only consider a
special instance when the energy in the system is reversible
and the reset map is continuous i.e., an identity map, then
we have the following discrete symmetry:

Definition 4 (Time-Reversal Symmetry): The time rever-
sal symmetry is an action of Gψ on the gait O endowed
with a function Sψ that reverses the velocities:

Sψ : [qT (t)
⊺, qL(t)

⊺, q̇T (t)
⊺, q̇L(t)

⊺]
⊺
, (2)

7→φnT [qT (t)
⊺, qL(t)

⊺,−q̇T (t)
⊺,−q̇L(t)

⊺]
⊺

This symmetry implies that when a robot faces forward
while moving backward, it is identical to moving forward
in a time-reversed fashion. This definition of symmetry has
been discussed by Marc Raibert on his bipedal hopping robot
and quadrupedal bounding robot [3]. The reverse motion also
satisfies the same set of EoMs as the forward motion and
one cannot decide whether the system is moving forward or
backward just by looking at the motion pictures [9].

2) Spatial Symmetry: The environment of the system also
has huge effects on the symmetries of gaits. As we modeled
legged systems as FBMs in the Euclidean space, they are
known for having symmetries to translations and rotations. If
there is no gravity in the environment and the robot is floating
in space, every transformation SE(3) of the torso’s state is
a symmetry that preserves the mass and inertia of the bodies
and the linear/angular momentum of the robot. As soon as
the robot is subjected to gravity and constrained to move on
a surface, it breaks the spatial symmetry of the system. Here,
for simplicity, we only consider the ground (moving surface)
to be flat and perpendicular to the gravitational field.

Definition 5 (Spatial Symmetry): Given the assumptions
above, the 2 dimensional Euclidean isometries SE(2) form
a continuous symmetry subgroup Gξ ⊂ G of a gait O. An
action of Gξ on the gait O is an assignment of a function
Sξ : O → O to each element ξ ∈ Gξ in such a way that:

Sξ : [qT (t)⊺, qL(t)⊺, q̇T (t)⊺, q̇L(t)⊺]
⊺
, (3)

7→ [T (qT (t))
⊺, qL(t)

⊺, q̇T (t)
⊺, q̇L(t)

⊺]
⊺

where T is a linear transformation in SE(2) that changes
the torso’s position qx, qy and heading direction qyaw.

This is the most obvious but often ignored symmetry in a
legged system, which applies to any gaits. It suggests a robot
can start from anywhere in space with a certain height and
move in any direction using the same gait without altering
the leg movements. This is also referred to as the group
of linear transformations in mechanics and they represent
changes in coordinates without affecting the formula for
differential equations of motion [10]. As for a planner
system, it implies the model can also move in the opposite
direction by changing qyaw = π rad in the inertial frame.
This will be referred to as Sξ(π) afterwords. However, it is
important to distinguish this symmetry from the temporal
symmetry mentioned in the previous definition. Even though
in both cases, the robot is moving backward, the orientation
qyaw of the robot is not changed in the temporal symmetry.

3) Morphological Symmetry: In a similar fashion to the
morphologies of animals in nature, most of the robots also
possess a bilateral symmetry (left and right sides are mirrored
images of each other with respect to the sagittal plane) that
reduces complexity in design, manufacturing, and control.
This symmetry will also introduce additional geometrical
symmetries in gaits. The detailed discussion of modeling of
articulated leg configurations has been omitted due to space
constraints. In the following analysis, we assume that all legs
have an identical structure and they are connected to the torso



at the hip and shoulder joints such that the bilateral symmetry
of the system with respect to the sagittal plane is retained
(see the model in Fig1.B as an example).

Definition 6 (Morphological Symmetry): Assume a robot
has the bilateral symmetry as described above, the permuta-
tions σ of the index set of four legs L = {LH, LF, RF, RH}
form a discrete symmetry subgroup Gσ . Morphological
symmetry on the gait O is a function Sσ:

Sσ : [qT (t)
⊺, qL(t)

⊺, q̇(t)⊺T , q̇(t)
⊺
L]

⊺
, (4)

7→ [qT (t)
⊺, σ(qL(t))

⊺, q̇T (t)
⊺, σ(q̇L(t))

⊺]
⊺

III. RESULTS

This section showcases our primary discoveries and illus-
trates how different parameter bifurcations break symmetries
in a simplistic model in distinct ways, leading to various
quadrupedal gaits and footfall patterns. In particular, we
employed numerical continuation techniques outlined in our
earlier research [11] and sought out periodic solutions. In this
study, we revealed four unique quadrupedal gaits (pronking,
bounding, half-bounding, and galloping) that demonstrate
interconnections through diverse parameter bifurcations. This
system has been developed in MATLAB, and the source
code is available for download from our GitHub repository
1. Please also refer to the multimedia file or visit the web
page 2 to view animations of the gaits in this study.

A. Pronking and Bounding Gaits

1) Pronking (PF): is a quadrupedal gait frequently ob-
served in quadrupedal animals, characterized by the synchro-
nized movement of all four legs. During a single stride, there
is only one flight phase followed by a stance phase, during
which all four legs make contact with the ground, moving
in precisely the same manner. This results in zero torque on
the torso and the torso has no rotational motion throughout
the stride (q̇pitch = 0 [rad/s]). Our parameter continuation
process initiated with a simple seed solution, where the
model executed an in-place jump, with all four legs aligned
vertically downward (q̇x = 0 [

√
glo] and q̇pitch = 0 [rad/s]).

When the overall energy in the system was modified, the
resulting solutions constituted a one-dimensional curve (blue
curve in Fig. 2) with varying average speeds. Multiple
consecutive keyframes of the pronking gait, starting with
an initial speed of 5.2 [

√
glo], at the instances of the apex,

touchdown, and liftoff, were illustrated in Figure 2(a). In
our definitions, the pronking gait exhibits the largest number
of symmetries. It is characterized by the Time-Reversal
Symmetry Sψ , which means that by reversing the signs of the
velocity states, one can immediately identify another periodic
motion without changing the configurations or requiring
additional numerical integration. As shown in Figure 2(a),
this implies that examining the keyframes of the pronking
gait in the sequence of 4-3-2-1 also represents a pronking
gait moving in reverse with a negative horizontal speed. Fur-
thermore, it is worth noting that due to the uniformity of the

1https://github.com/DLARlab/BreakingSymmetryLeadstoDiverseGaits
2https://dlarlab.syr.edu/research/breaking-symmetries/
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Fig. 2. Gait branches of pronking forward (PF), bounding with gathered
suspension (BG), and bounding with extended suspension (BE) on the
Poincare section with the torso’s horizontal velocity q̇x as the horizontal axis
and pitching velocity q̇pitch as the vertical axis. Examples of each gait (a-c)
are shown as successive keyframes at the touch-down, lift-off moments, and
the apex at the bottom. Black feet are used to highlight the legs in stance.

leg motions, the pronking gait preserves all morphological
symmetry related to leg permutations Sσ , where σ ∈ SL (
SL denotes all permutations of the set L).

2) Bounding (BG and BE): Compared to pronking gaits,
bounding gaits exhibit a breakdown in the coordination
between the front and hind legs. Despite the synchronized
movements within the front and hind leg pairs, there is a
phase delay between legs on the same sides, leading to
two touchdown and liftoff events within a single stride.
Our model yielded two distinct types of solutions that
adhere to this pattern. In the first type of bounding gait,
as depicted in Fig. 2(b), the hind leg pair makes initial
contact with the ground, followed by the front legs, causing
the leg pairs to converge inward during the flight phase.
This particular gait is referred to as bounding with gathered
suspension, as described in [7], and we’ll abbreviate it as
BG hereafter. In Fig. 2, these solutions are represented
by the solid orange curve, which bifurcates from the PF
branch at q̇x = 4.4 [

√
glo] (designated as black dot A). The

other type of bounding gait is characterized by the opposite
sequence of touch-downs, as shown in Fig. 2(c), where the
front legs touch the ground first, followed by the hind legs.
Consequently, the swing leg pairs extend outward during
the flight phase, termed bounding with extended suspension
(BE). In Fig. 2, these solutions are represented by red
dashed curves, connected to the pronking branch at the same
bifurcation point A. Although the footfall patterns and swing
leg behaviors of these two bounding gaits differ, they share
common underlying symmetries. Both BG and BE possess

https://github.com/DLARlab/BreakingSymmetryLeadstoDiverseGaits
https://dlarlab.syr.edu/research/breaking-symmetries/


an equal number of morphological symmetries Sσ , where
σ ∈ {(LF,RF), (LH,RH), (LF,RF)(LH,RH)}. This means that
the system states of legs within the front or hind leg pairs
follow identical time series. Consequently, altering the states
within one or both leg pairs will not impact the system’s
dynamics. Contrasting with the PF gait discussed in the
previous section, the distinguishing feature in the bounding
gaits lies in the symmetry breakdown between the front and
back leg motions, represented by σ = (LH,LF)(RF,RH).
This introduces a phase lag in the leg pairs, which can be
either positive or negative, giving rise to two new gaits:
BG and BE, originating from point A. Furthermore, it is
noteworthy that new periodic orbits can be identified for both
BG and BE gaits by merely reversing all the speeds while
retaining the same system configurations. This highlights the
presence of time-reversal symmetry ψ. Without performing
an additional numerical search, the keyframes displayed in
Fig. 2 (b)&(c) represent two distinct periodic solutions with
opposite moving directions: one advances from the 1st frame
to the 6th frame with a positive speed, while the other moves
in the reverse direction, from the 6th frame back to the 1st
frame with a negative speed.

B. Pronking and Bounding Gaits of an Asymmetric Model

The time-reversal symmetry ψ observed in the pronking
and bounding gaits illustrated in Fig. 2 offers a practical
method for identifying two periodic motions within a single
numerical search. Nevertheless, as demonstrated in this sub-
section, the presence of this symmetry is strongly contingent
on the morphological symmetry concerning the frontal plane,
where the mechanical components of the system’s anterior
and posterior are mirrored. To be more precise, our findings
indicate that when the COM is shifted away from the body’s
central point, the pronking and bounding gait branches
discussed in the previous section undergo rapid changes.

We conducted numerical continuations using two models
with distinct parameters, where lb,H was set at 0.4 [lo] for
the model with the COM closer to the posterior, and 0.6 [lo]
for the model with the COM closer to the anterior. To
clearly differentiate the results, we utilize a trapezoidal shape
to represent the robot’s torso, positioning the COM closer
to the side with the longer base. During forward motion
(q̇x > 0), the pronking branch PF is no longer present
in both models. This absence is attributed to the differing
lever arm lengths of the four legs, preventing the leg forces
from producing zero torque on the torso during the stance
phases when all four legs were fully synchronized. In each
of the models, we observe only one type of bounding gait
at a given speed. In the model with lb,H = 0.4 [lo] (as
shown in Fig. 3(d)), BE appears within lower speed ranges
(indicated by the dashed orange curve), while BG emerges
(solid orange curve) as the exclusive gait at speeds exceeding
q̇x = 3.2 [

√
glo]. Conversely, in the model with the reversed

COM shift (depicted in Figure 3(e)), BE (represented by
the dashed red line) is the sole bounding gait seen at
speeds surpassing q̇x = 2.5 [

√
glo]. In comparison to the

symmetrical model discussed in the previous section, both
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Fig. 3. The figure displays bounding gait branches for asymmetrical
models where lb,H ̸= 0. Two specific cases, lb,H = 0.40 [lo] and
lb,H = 0.60 [lo], are highlighted, with their corresponding solution
branches illustrated in orange and red, respectively. Solid lines represent
bounding gaits with gathered suspensions (BG), while dashed lines depict
bounding gaits with extended suspensions (BE). In contrast to the bounding
gaits of the symmetrical model shown in Fig. 2, our numerical analysis
indicates that as the COM shifts closer to the rear, BG manifests at
intermediate speeds (d). In contrast, when the COM is nearer to the front
at lb,H = 0.60 [lo], BE remains the exclusive bounding gait.

bounding gait branches are only present within intermediate
speed ranges and vanish rapidly when the speed exceeds
q̇x = 5 [

√
glo]. However, it is important to observe that,

as depicted in Fig. 3(d)&(e), the pitch angles are no longer
zero, and the magnitudes of leg angles differ during the apex
transition in the first and last frames. This indicates that
the time-reversal symmetry ψ is no longer preserved for a
gait originating from a model with lb,H ̸= 0.50 [lo]. Hence,
reversing the speeds (via ψ) does not result in discovering
gaits that moved backward i.e., observing the frames in the
sequence of 6-1 does not represent a periodic motion for
the same model. Furthermore, for a given speed, the model
with full symmetry illustrated in Fig. 2 has two feasible
bounding gaits readily available. For the asymmetrical model
depicted in Fig. 3, only one bounding gait exists, and the
viable footfall pattern depends on the location of the COM.

IV. CONCLUSIONS

In this study, we conducted a comprehensive exploration
of the symmetries in quadrupedal legged locomotion, em-
ploying the principles of group theory. These solutions were
identified using a single energy-conserving model which
represent distinct oscillation modes within the same hybrid
system, triggered solely by initial conditions like forward
speed and the torso’s height. This work not only provides
crucial insights into the rationale behind utilizing multiple
gaits at varying speeds but also holds the promise of an
efficient and versatile strategy for generating reference tra-
jectories for robotic systems with desired footfall sequences.
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