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Abstract— Model-free reinforcement learning is a promising
approach for autonomously solving challenging robotics control
problems, but faces exploration difficulty without informa-
tion about the robot’s morphology. The under-exploration of
multiple modalities with symmetric states leads to behaviors
that are often unnatural and sub-optimal. This issue becomes
particularly pronounced in the context of robotic systems with
morphological symmetries, such as legged robots for which
the resulting asymmetric and aperiodic behaviors compromise
performance, robustness, and transferability to real hardware.
To mitigate this challenge, we can leverage symmetry to guide
and improve the exploration in policy learning via equivariance
/ invariance constraints. We investigate the efficacy of two
approaches to incorporate symmetry: modifying the network
architectures to be strictly equivariant / invariant, and leverag-
ing data augmentation to approximate equivariant / invariant
actor-critics. We implement the methods on challenging loco-
manipulation and bipedal locomotion tasks and compare with
an unconstrained baseline. We find that the strictly equivari-
ant policy consistently outperforms other methods in sample
efficiency and task performance in simulation. Additionaly,
symmetry-incorporated approaches exhibit better gait quality,
higher robustness and can be deployed zero-shot to hardware.

I. INTRODUCTION

The field of robotics has witnessed a surge in the adoption
of data-driven reinforcement learning (RL) methods to tackle
the control problems of legged locomotion [1], [2], naviga-
tion [3], and manipulation [4]. This trend is primarily fueled
by the ability of these methods to (i) cope with phenomena
that impact the system evolution but are challenging to model
analytically, (ii) autonomously acquire control strategies
without the need of extensive domain knowledge. However,
commonly-used model-free RL methods often treat the robot
as a black-box system; by neglecting analytical models of
dynamics, they often remain agnostic to the properties of
robot’s morphology. Furthermore, these methods face explo-
ration difficulties to learn multi-modalities, especially sym-
metric modalities [5] where the under-exploration of some
modes leads to asymmetric behaviors that are often unnatural
and sub-optimal. For example, failure to fully capture the two
symmetric modalities of bipedal locomotion leads to limping
behaviors and reduced control performance, compromising
robustness and transferability to real hardware.

Leveraging symmetries in Markov decision processs
(MDPs) is a promising direction to alleviate the difficulty
in symmetric-modality learning and provides a strong bias
that we can leverage to improve the policy’s exploration.
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Fig. 1: Comparison between non-equivariant (left) and equivariant
(right) control policies, of a quadrupedal robot with a sagittal
reflection symmetry, performing a right / left bipedal turning task.
Top plots show the trajectories of a commanded turn in opposite
directions. Bottom figures visualize the gait pattern the policy
learns. While the unconstrained policy learns an asymmetric gait
between left and right feet and fails to perform a symmetric turning
trajectory, the equivariant policy achieves both motion-level and
task-level symmetry. For more experimental results, readers are
encouraged to check out the supplementary video at https:
//youtu.be/Ad1clt4Yi4U or project website at https://
suz-tsinghua.github.io/symmloco/.

Specifically, since symmetric MDPs possess equivariant op-
timal control policies [6], [7], posting equivariance require-
ments on the RL policy helps it approach such an optimal
policy. Since symmetry is ubiquitous in both biological and
robotic systems, it is indeed an important but under-explored
question of the best way to properly incorporate symmetry
into RL algorithms. We note that although equivariance has
gained attention in other fields such as computer vision and
graphics, there have been limited prior works that apply it on
legged robots and demonstrate its efficacy in related tasks.

In this work, we investigate different methods for adding
equivariance information in improving the exploration guid-
ance in training model-free RL algorithms. Specifically, we
investigate how a loosely equivariant policy trained by data
augmentation as carried out in [8] compare to a strictly
equivariant policy enforced by its network architecture on
legged robot control. We perform extensive experiments
in the challenging tasks of loco-manipulation and bipedal
locomotion as quadrupeds. We benchmark the two methods
against a vanilla RL policy in simulation environments
and showcase the optimality of the symmetry-incorporated
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policies. Our experimental results show that the equivariance-
enforced policy consistently outperforms other variants both
in terms of the performance metrics and the acquired gait
patterns being more steady and natural.

We demonstrate the sim-to-real capability of both meth-
ods for completing a loco-manipulation task and a bipedal
locomotion task, and show the enhanced robustness of the
symmetry-incorporated policies compared to a vanilla RL
policy. We provide a detailed discussion on the robustness
of the two variants on real-world hardware, which could
provide guidance for future development using symmetry-
incorporated RL methods for different tasks.

II. INCORPORATING SYMMETRY IN MODEL-FREE RL

We introduce two variations of PPO [9] leveraging the
robot’s morphological symmetry: PPO with data augmen-
tation in training (PPOaug) and PPO with hard equivari-
ance/invariance constraints on neural networks (PPOsymm).
These are compared with a vanilla PPO implementation.
Symmetric loss function methods were excluded as they were
outperformed by PPOaug [8]. For symmetry representations
ρS and ρA, we use MorphoSymm [10] and ESCNN [11].

A. PPOaug

This method leverages data augmentation on policy πθ and
critic Vϕ by using both augmented and collected transition tu-
ples. Data augmentation biases the critic to be approximately
G-invariant, guiding the actor towards an invariant return
estimate. Since PPO is on-policy, augmented samples intro-
duce off-policy effects, which we mitigate by ensuring πθ
is approximately equivariant. To achieve this, we minimize
gradient differences between original and augmented samples
by performing augmentation over each mini-batch during
policy updates, and initialize the policy network with zero
mean and small variance. This ensures the policy remains
approximately equivariant after updates.

B. PPOsymm

To enforce G-equivariance on πθ and G-invariance on
Vϕ, we use equivariant/invariant neural networks, specifically
EMLP, which ensures πθ(g ▷ s) = g ▷ πθ(s). The invariant
critic is designed by substituting the final layer of the
EMLP with an invariant transformation. This makes Vϕ(g ▷
s) = Vϕ(s). Additionally, we consider temporal symmetry
by assuming gait periodicity, allowing valid equivariance
transformation on the phase signal ψ. Including ψ helps
avoid the problem of neutral states where g ▷ s = s.

III. TASKS

We compare the Proximal Policy Optimization (PPO) vari-
ants on four tasks involving loco-manipulation and bipedal
locomotion in quadrupedal robots. Observations include
proprioceptive and task-specific data. All rewards are G-
invariant. Training is conducted in the Isaac Gym [12] with
domain randomization.

Door Pushing: In this task (Fig. 2(a)), the robot stands and
opens a door using its front limbs, adjusting for doors that

(a) Door Pushing (b) Dribbling (c) Stand Turning (d) Slope Walking

Fig. 2: Challenging tasks to test the efficacy of symmetry-
incorporated policies. (a,b) showcase loco-manipulation with task-
space symmetry and (c,d) exhibit bipedal locomotion with motion-
level symmetry. These tasks push the boundary of agility and
dynamic mobile manipulation for quadrupeds.

swing left or right. Observations include the door’s relative
position, orientation, and swing direction. The reward in-
volves forward velocity tracking to encourage door-pushing.

Dribbling: Shown in Fig. 2(b), the robot dribbles a soc-
cer ball based on desired velocity commands. Observations
include the ball’s relative position to the robot, and rewards
focus on ball velocity tracking and proximity to the ball [13].

Stand Turning: This agile bipedal locomotion task,
adapted from [14], requires the robot to stand on two feet
and follow input commands for linear velocity and heading,
with rewards based on tracking accuracy.

Slope Walking: In this task, the robot traverses an inclined
surface on two feet, using a terrain curriculum with a
maximum slope of 11.3◦.

IV. TRAINING AND EVALUATION

In this section, we discuss the training and evaluation of
PPO, PPOaug, and PPOeqic across the described tasks. The
training scheme remains consistent for all methods, with
separate hyperparameter tuning for each task. We evaluate
performance on 2,000 simulation environments, with results
averaged over three different seeds.

A. Training Performance

We assess training return and sample efficiency as the criteria
for training performance. As shown in Fig. 3, PPOeqic
consistently outperforms other variants, demonstrating the
effectiveness of equivariance constraints. PPOeqic also ex-
hibits improved sample efficiency, especially in early train-
ing stages, indicating more efficient exploration guidance.
PPOaug achieves high training returns but similar sample ef-
ficiency compared to vanilla PPO. Unlike PPOeqic, PPOaug
must learn two approximately equivariant action distribu-
tions, making it a more complex learning process. Vanilla
PPO often converges to suboptimal policies that overfit to
simulation, lacking robustness for sim-to-real transfer.

B. Door Pushing Task

The door-pushing task benchmarks task-level symmetry in
loco-manipulation using success rate (SR) and the Symmetric
Index (SI) [15]. Note that a higher SI indicates a more
asymmetric behavior, which is not desired.

1) Success Rate: As shown in Table I, PPOeqic achieves
a 4.47% higher mean SR than PPO, while PPOaug has a
6% lower mean SR. Both symmetry-incorporated policies
reach a higher maximum SR, around 88% for PPOeqic and
87% for PPOaug, suggesting a greater likelihood of optimal
performance. PPOeqic also shows a 10% higher mean SR



Fig. 3: Comparison of training curves of PPO, PPOaug, and PPOeqic on four tasks from left to right: Door Pushing, Dribbling, Stand
Turning, and Slope Walking. Learning curves show mean episodic return and standard deviation for three seeds. PPOeqic consistently
demonstrates the highest training returns and sample efficiency in all tasks.

Method Mean SR (%) Max SR (%) RSI OOD Mean SR (%) OOD Max SR (%) OOD RSI

PPO trained on 1 side 43.40 ± 1.73 44.47 199.96 27.46 ± 2.34 30.04 199.99
trained on 2 sides 61.18 ± 7.56 69.63 12.25 42.98 ± 2.21 45.51 3.45

PPOaug trained on 1 side 54.39 ± 32.56 86.98 3.02 38.24 ± 19.17 52.85 1.40
trained on 2 sides 50.24 ± 36.52 74.98 3.77 36.46 ± 25.98 53.78 0.17

PPOeqic trained on 1 side 65.65 ± 23.16 87.96 0.98 44.15 ± 9.39 50.63 0.88
trained on 2 sides 59.92 ± 17.39 74.74 1.65 38.56 ± 15.54 55.95 0.32

TABLE I: Comparison of success rates (SR) and their symmetry index on door-pushing tasks on training-distribution and out-of-distribution
scenarios. Of the three variants, PPOeqic demonstrates both higher success rate and better symmetry index in both cases, indicating a
better task-level symmetric policy.

than PPOaug, indicating that training can be more robust over
different seeds with hard-constraint equivariance compared
to that induced by symmetric augmentation.

2) Symmetry Index: Shown in Table I, PPO receives a
high SI, 4 times higher than PPOaug and 8 times higher
than PPOeqic, indicating its failure to learn balanced policies
between symmetric modes. In contrast, PPOaug and PPOeqic
achieve low SI values, demonstrating symmetric behavior in
the task space.

3) Out-of-Distribution Scenarios: In out-of-distribution
scenarios, PPOeqic outperforms PPO in both mean and
maximum SRs. It demonstrates more stable performance
than PPOaug, achieving a 5.9% higher mean SR across three
seeds, showing better generalization to symmetric MDPs.

4) Single Mode Training: Interestingly, PPOeqic trained
only on one side scenario consistently outperforms training
on both sides. This trend also appears in PPOaug, despite
the lack of enforced equivariance. We attribute this to do-
main randomization of joint properties, which breaks the
assumption of G-invariant state transition probability. In
cases of asymmetrical randomization, training on only one
mode allows the policy to leverage symmetry effectively. It
can mirror an equivariant transition without conflicting with
the training data, forming a symmetric MDP. However, if
both modes are included, mirrored transitions in the training
data can cause conflicts due to asymmetric dynamics. Fur-
thermore, PPOeqic trained with right-handed doors can be
zero-shot deployed on doors swinging either way.

C. Dribbling Task

Generally, symmetry improves dribbling gaits. PPOeqic and
PPOaug keep the ball closer to the robot, while PPO often
kicks it away. Quantitatively, PPOeqic achieves a slight
edge in episodic return, suggesting near-saturation in the
simulation environment for all methods.

Method Error (rad) Error RSI CoT (Js/m) CoT RSI

PPO 0.265 ± 0.022 0.0945 2223 ± 102 0.0259

PPOaug 0.259 ± 0.010 0.0212 2378 ± 101 0.0046

PPOeqic 0.254 ± 0.014 0.0207 2026 ± 187 0.0172

TABLE II: Comparison of command tracking error, Cost of
Transport and their symmetry index on stand turning tasks for
three PPO variants. PPOeqic demonstrates less error and energy
consumption, indicating a more optimal policy.

D. Stand Turning Task

In this bipedal locomotion task, PPO develops a staggered
gait that results in jittering and lacks symmetric turning. In
contrast, symmetry-incorporated policies exhibit both sym-
metric gaits and turning trajectories. PPOeqic achieves lower
tracking error and cost of transport (CoT) compared to
other variants, indicating relative optimality. PPOaug shows
lower tracking error and error SI but higher CoT than PPO,
suggesting less optimal behavior than PPOeqic.

E. Slope Walking Task

In the slope walking task, we observe significant differences
between the three PPO variants. While the PPO policy learns
a relatively natural gait, it struggles with symmetric foot
placement, leading to backward steps and frequent balance
loss, as shown in Fig. 4(a). This results in poor velocity
tracking, with the policy covering only half the distance of
PPOeqic in the same timeframe. The PPOaug policy shows
improvement, with better alternation between feet, but still
exhibits variations in step size and occasional staggering
(Fig. 4(b)). PPOeqic demonstrates the most stable gait, with
consistent foot exchange and regulated contact sequences on
an 11.3◦ incline (Fig. 4(c)). It achieves the desired walking
velocity of 0.25 m/s, outperforming PPOaug by 20%.
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Fig. 4: Plots of the feet positions in the desired walk direction.
We observe that vanilla PPO learns an unstable step pattern with
backward steps and foot slipping, resulting in 50% slower walking
speed. PPOaug improves drastically but asymmetric patterns such
as foot dragging still exists. PPOeqic presents the most symmetric
interweaving gait pattern and walks at the desired speed.

(a) Left

(b) Right

(c) Left

(d) Right

Fig. 5: Snapshots of equivariant policies deployed zero-shot to
perform real-world tasks of door pushing (a,b) and stand turning
(c,d). For task-level symmetry (e.g. door pushing), PPOeqic trained
with only right-handed door can be deployed on both left and right-
handed doors with symmetric gait patterns. For motion symmetry,
PPOaug is more robust against slightly asymmetric dynamics that
exists on actual hardware.

F. Real-world Experiments

We assess sim-to-real transfer through real-world experi-
ments on two selected tasks.

1) Door Pushing Task: Although vanilla PPO achieves
high success rates in simulation, it underperforms in real-
world scenarios, with the asymmetric gaits often causing the
robot to fall due to overfitting to simulated contact dynamics.
In contrast, PPOeqic demonstrates greater robustness; even
when trained on right-handed doors, it can effectively open
both left and right-handed doors. PPOaug, however, tends
to rely on one front leg, showing limited pushing strength.
This underscores the value of equivariance constraints for
achieving optimal real-world performance.

2) Stand Turning Task: PPO fails in real-world settings,
while PPOaug and PPOeqic demonstrate good zero-shot
transfer, executing consistent 90-degree turns. PPOaug ex-
hibits higher robustness, completing 9 out of 10 trials. This
again highlights the substantial enhancement in sim-to-real
transfer by incorporating symmetry into the learning process.

3) Discussion: As expected, real-world environments are
not perfectly symmetric MDPs, attributed to the asymmetries
resulted from hardware, ground conditions, and other com-
plicated factors. PPOeqic excels in tasks dominated by task-
space symmetry where intrinsic asymmetries are negligible.
In tasks with intrinsic symmetry, PPOeqic is more sensi-
tive to distribution shifts. PPOaug allows adaptation to the
robot’s asymmetries, enhancing robustness against imperfect
symmetry. The choice between PPOaug and PPOeqic should
be tailored to the problem’s nuances.

V. CONCLUSION

In this work, we investigate the benefits of leveraging
symmetry in model-free RL for legged locomotion. We
compare the performance of incorporating data augmentation
and hard equivariance constraints across four challenging
bipedal locomotion and loco-manipulation tasks against a
vanilla PPO baseline. We find that imposing hard symmetry
constraints on the learned policy and value functions leads to
better performance than other methods. Compared to vanilla
PPO, equivariant policies learn notably more steady and sym-
metric gait patterns, eventually leading to better task-space
symmetry. More importantly, equivariant policies trained on
single symmetry mode are directly generalizable to other
modes. When applied to real-world scenarios, symmetry-
incorporated policies demonstrate significantly better robust-
ness than unconstrained policy. Furthermore, PPOaug copes
with slight asymmetry in robot’s own dynamics, while PPOe-
qic demonstrates better performance on task-space symmetry.

We hope this work can aspire the exploration of leveraging
symmetry constraints on robots with larger symmetry groups
than the reflection group concerned in this work. As the
number of symmetry modalities increases, the symmetry
constraints are expected to play a more crucial role in guiding
the exploration of model-free RL over the increasingly
complex state, action spaces. In addition, equivariant policies
demonstrate promising potential for even larger performance
gains over vanilla PPO, highlighting improvements as large
as 26% in some seeds. Future efforts could be on stabilizing
training to consolidate this enhancement and develop better
symmetry-incorporated RL algorithms.
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