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Abstract— We propose a novel framework for dexterous
grasp generation that leverages geometric algebra represen-
tations to enforce equivariance to SE(3) transformations. By
encoding the SE(3) symmetry constraint directly into the ar-
chitecture, our method improves data and parameter efficiency,
while enabling robust grasp generation across diverse object
poses. Additionally, we incorporate a differentiable physics-
informed refinement layer, which ensures generated grasps
are physically plausible and stable. Extensive experiments
demonstrate the model’s superior performance in generaliza-
tion, stability, and adaptability compared to existing methods.
Additional details at gagrasp.github.io

Index Terms— Multifingered Hands, Equivariant Neural Net-
works, Deep Learning in Grasping and Manipulation, Dexter-
ous Manipulation.

I. INTRODUCTION

Dexterous grasping remains a fundamental challenge in
robotics, especially in unstructured environments with di-
verse object poses. Most existing datasets [1–3] contain
grasps in canonical poses, limiting the generalizability of
learning-based methods. These methods often require data
augmentation [4, 5] or assume canonical poses [6, 7], making
them prone to out-of-distribution issues.

To address this, we propose a framework that integrates
geometric algebra (GA) to achieve equivariance and invari-
ance under SE(3) transformations. GA provides a unified
approach to handle geometric data, directly embedding sym-
metry properties into the network [8, 9]. This allows us
to develop a symmetry-aware diffusion model for grasp
generation that can generalize more effectively across diverse
poses encountered in real-world tasks.

We further incorporate a differentiable physics-informed
loss to ensure that generated grasps are both geometrically
feasible and physically plausible. Inspired by classifier guid-
ance in diffusion models [10], our approach allows for direct
optimization of grasps, enhancing stability and physical
plausibility.

Our contributions are threefold: (1) We introduce a
symmetry-aware diffusion-based grasp generation framework
leveraging GA for equivariance under the broader Euclidean
E(3) group, (2) incorporate a differentiable physics loss for
physical plausibility, and (3) demonstrate improved gener-
alization and data efficiency through extensive experiments.
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Fig. 1: Illustration of the symmetries in robotic grasping
problems. Our grasp generation model leverages SE(3) sym-
metries, maintaining the probability P (g|O) = P (g′|O′) under
transformations.

II. RELATED WORK

Vision-based Grasp Prediction methods aim to map vi-
sual inputs to grasp configurations. Traditional approaches [3,
11–14] often use a two-stage process, generating a contact
heatmap followed by optimization [15]. More recent meth-
ods explore end-to-end learning via GANs [4, 5, 16, 17],
VAEs [18], and diffusion models [6, 7, 19]. However, many
of these assume canonical object poses, limiting generaliz-
ability. Data augmentation techniques [4, 5, 16] address this,
but they increase complexity.

Diffusion Models have shown promise across various
robotics tasks, including motion planning [20–23], naviga-
tion [24], and manipulation [25–27]. For grasping, Urain
et al. [19] applied diffusion models to generate parallel-
jaw grasps, while others extended this to dexterous grasp-
ing [6, 7]. Despite their advantages, such as stable training
dynamics and high-quality sample generation, challenges like
physical plausibility and handling OOD poses persist.

Equivariant Neural Networks learn representations that
transform predictably with input transformations, enhancing
model generalization [28–31]. Group equivariant CNNs [32,
33] are popular for implementing equivariance to rota-
tions [34], similarity transformations [29], and Euclidean
transformations [35, 36], though they have limitations in in-
put types and architectures [37]. Recent approaches leverage

https://gagrasp.github.io/


Transformation Geometric Objects G3,0,1 Element

Identity Scalar Scalar
Reflection Plane Vector
Rotation / Translation Line Bivector
Roto / Transflection Point Trivector
Screw Pseudoscalar Quadvector

TABLE I: Embeddings of group elements in E(3) and common
geometric objects in G3,0,1. Each transformation or geometric
object can be represented by components of the multivector.

geometric algebra [8, 38] to enforce SE(3) equivariance,
improving generalization for unseen transformations in grasp
configurations.

Differentiable Physics in Grasping has emerged as a
key approach to ensuring the physical plausibility of grasps.
While heuristic-based refinement steps [4, 16] are common,
they can be computationally expensive. More formal ap-
proaches using differentiable physics [1, 3, 39–41] provide
guarantees of physical plausibility but are often slower. In
this work, we adapt the differentiable metric from Turpin et
al. [1, 41] to guide the generation process, directly optimizing
grasp configurations for stability and contact richness.

III. PRELIMINARIES

A. Geometric Algebra

Geometric algebra (GA) provides a unified framework for
representing geometric objects and transformations, extend-
ing vector algebra with multivectors. A multivector in 3D
GA G3,0,0 can be expressed as:

x = xs +

3∑
i=1

xiei +
∑
i<j

xijeiej + x123e1e2e3, (1)

where xs, xi, xij , and x123 are real coefficients. In our
work, we use the projective geometric algebra G3,0,1 [8, 38],
which extends the 3D GA G3,0,0 with a fourth homogeneous
coordinate x0e0, resulting in a 16-dimensional multivector
in GA representation. The geometric product in GA satisfies
closure, associativity, distributivity, and other key properties,
making it ideal for representing transformations such as
rotations and translations. In G3,0,1, transformations can be
represented uniformly as multivectors, with the action of
a transformation u on a geometric object v given by the
sandwich product u[v] = uvu−1. For example, when applied
to dexterous grasp generation, these operations allow us to
describe object orientations and hand configurations in a way
that is consistent across different reference frames, enhancing
model robustness to changes in pose. Table I summarizes
common geometric objects and their corresponding GA
elements.

For a more comprehensive study of geometric algebra and
its applications, we direct readers to [8, 9, 38, 42].

B. Problem Formulation

We aim to generate dexterous grasps for objects repre-
sented by point clouds. Given a point cloud O ∈ RN×3, the
goal is to sample grasps G parameterizing a dexterous hand’s
pose. Each grasp g ∈ G is represented by [r,p,q], where

r ∈ R6 and p ∈ R3 represent the rotation and translation
of the hand base, respectively, and q ∈ Rk denotes the joint
configurations. We model the grasp generation process as
learning a distribution p(g | O) conditioned on the observed
point cloud.

C. Equivariance and Invariance in Grasp Generation

In grasp generation, we require that the mapping from
object representation to hand base pose be equivariant under
SE(3) transformations, while the mapping to joint config-
urations should be invariant. A function f : X → Y is
said to be equivariant with respect to the transformation
group G if f(ρX(x)) = ρY (f(x)) for a group element
ρ and an input x, where ρZ denotes the action of the
group element ρ on the space Z. Invariance is defined
as f(ρX(x)) = ρY (f(x)) = f(x). This ensures that the
generated grasps remain consistent under transformations,
mathematically expressed as:

p([r,p,q] | O) = p([ρ · (r,p),q] | ρR3(O)), (2)

where ρ ∈ SE(3), and g ·h denotes the composition of group
elements g, and h ∈ G.

IV. METHODOLOGY

We introduce a framework for generating dexterous grasps
using a conditional diffusion model that handles the high-
dimensional grasp space while ensuring robustness to varia-
tions in object poses.

A. Diffusion-based Grasp Generation

Our pipeline generates high-quality grasps by iteratively
refining sampled grasps through a diffusion process [43].
Starting with a grasp g0 = [r0,p0,q0], it is diffused into
Gaussian noise over T timesteps:

q(g1:T | g0) =

T∏
t=1

N (gt;
√

1− βtgt−1, βtI) (3)

where βt is the scheduled noise variance at timestep t.
To recover the original grasp, the model iteratively re-

moves the added noise using a noise predictor ϵθ:

Lϵ = ∥ϵθ(gt, O, t)− ϵt∥22 (4)

where ϵt is the ground-truth noise at timestep t.
The denoising process is defined as:

pθ(g0:T | O) = p(gT )

T∏
t=1

N (gt−1;µt,Σt) (5)

where µt = µθ(gt, O, t) and Σt = Σθ(gt, O, t) can be
inferred from ϵθ(gt, O, t) and the parameters of the diffusion
process.

B. Equivariant Model Architecture

Building on the principle that an equivariant denoising
model ensures an invariant marginal distribution [38, 44],
we incorporate symmetries into our model architecture using
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Fig. 2: Model architecture for equivariant dexterous grasp generation. Point cloud O and grasp configuration gt are embedded using
G3,0,1 embeddings, processed through GATr blocks for SE(3) equivariance, with down-sampling to reduce computational load.
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Fig. 3: The GATr Block processes key, value, and query inputs with equivariant layers, using Geometric Algebra-based attention and
nonlinearities to maintain SE(3) equivariance for the grasp configuration.

multivector representations in G3,0,1 leveraging the primi-
tives defined by Brehmer et al. [38], as shown in Figure 2
and 3.

Equivariant Linear Layers ensure geometric properties
are preserved:

ϕ(x) =

4∑
k=0

wk⟨x⟩k +

3∑
k=0

vke0⟨x⟩k (6)

where ⟨x⟩k is the grade projection that isolates the k-grade
components of the multivector x, and wk and vk are learnable
parameters.

Geometric Bilinears combine geometric products and
join operations. The geometric product xy allows for
the mixing of different grades, and the join operation
Join(x, y) = (x∗ ∧ y∗)∗, where x∗ is the dual of x and
x ∧ y denotes the exterior (wedge) product between x
and y, is necessary for constructing meaningful geometric
features. The geometric bilinear layer is then defined as:
Geometric(x, y; z) = Concat(xy, z0123(x∗ ∧ y∗)∗), where
z0123 is the pseudoscalar component of a reference multi-
vector z calculated from the network inputs.

Equivariant Attention adapts dot-product attention to
multivectors. Given multivector-valued query, key, and value
tensors (Q,K, V ) with ni tokens and nc channels, attention
scores are computed using the inner product in G3,0,1:

Attention(Q,K, V )i′c′ =
∑
i

Softmax
(∑

c⟨Qi′c′ ,Kic′ ⟩√
8nc

)
Vic′ (7)

where i, i′ index tokens, c, c′ index channels, and ⟨·, ·⟩ is
the invariant inner product, a regular dot product on 8 of 16
dimensions without e0 terms.

Equivariant Nonlinearities and Normalization are cru-
cial for preserving the geometric properties during transfor-
mations. We use scalar-gated GELU (Gaussian Error Linear
Unit) nonlinearities [45]: GatedGELU(x) = GELU(x1)x,

where x1 is the scalar component of the multivector x.
Normalization is achieved through an E(3)-equivariant Lay-
erNorm:

LayerNorm(x) =
x√

Ec[⟨x, x⟩]
where the expectation Ec of the inner product is taken over
the channels.

Down-Sampling Layers reduce the point set size for
computational efficiency, inspired by PointTransformer [46].
The process includes farthest point sampling (FPS) in xyz
space, followed by k-nearest neighbors (kNN) pooling, with
max pooling on the scalar component of multivectors to
retain critical geometric information.

Symmetry Breaking adjusts the model to handle cases
where full E(3) symmetry is unnecessary, particularly in
grasping tasks requiring SE(3) symmetry. This is achieved
by introducing pseudoscalar features to encode handedness,
enabling the model to better adapt to specific tasks.

C. Physics-Informed Differentiable Refinement Layer

Inspired by Turpin et al. [1, 41], our refinement layer uses
gradients from a differentiable physics simulator [47, 48] to
iteratively adjust grasp configurations. The object is initial-
ized with velocity ṗobj(0) in pose (robj(0),pobj(0)) with a
grasp g being executed. After Tsim timesteps, final velocities
(ṙobj(Tsim), ṗobj(Tsim)) are computed across M simulations
with varying initial velocities. The stability loss we are trying
to optimize is then given by:

Lstability =
1

M

M∑
m=1

(∥∥ṗobj(Tsim)m
∥∥2

2
+ ∥ṙobj(Tsim)m∥22

)
. (8)

Additionally, joint configuration constraints are enforced
via:

Lrange =

∥∥∥∥q −
qup + qlow

2

∥∥∥∥2
2

, Llimit = max(q−qup, 0)+max(q−qlow, 0)

(9)



103 104

Training samples

48%

50%

52%

55%

57%

60%

62%

65%

68%

S
uc
ce
ss

R
at
e

Grasp Success Rate

103 104

Training Samples

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

D
iv
er
si
ty

(r
ad
)

Diversity of Generated Grasps

FFHNet

SceneDiffuser

Ours

Ours w/ opt

103 104

Training samples

20%

30%

40%

50%

60%

S
uc
ce
ss

R
at
e

SE(3) Generalization

Fig. 4: Experimental Results. Grasp
success rate and diversity metrics across
different data amounts. "Ours w/ opt"
refers to our model with the physics-
informed refinement layer. Left: Our
model outperforms others in grasp suc-
cess rate, especially with fewer training
samples. Middle: Our model generates
more diverse grasps. Right: SE(3) gen-
eralization performance, highlighting ro-
bustness in handling out-of-distribution
data with random SE(3) transforma-
tions.

Stronger Physics-Informed Refinement Weight

Fig. 5: Example Grasps
Generated by our Method.
Our model generates stable
grasps for unseen objects. As
the Physics-Informed Refine-
ment weight λ increases (left
to right), the model produces
more stable power grasps,
while a smaller λ results
in precision fingertip grasps,
showing adaptability in grasp
types.

Ours SceneDiffuser [7]

without Refinement 61.42 60.47
with Refinement 67.89 65.31

TABLE II: Comparison of the grasp success rate with and without
physics-informed refinement layer for our model and SceneDiffuser.

where qup and qlow denote the upper and lower limit of the
joints, respectively.

The overall objective function is: Lphys = Lstability +
α1Lrange + α2Llimit, where α1 and α2 are hyperparameters.

The gradients of this objective function adjust the mean
during denoising: µ̂t = µt +λ∇gLphys, where µt is defined
as in Equation 5, and λ is a scaling factor that controls the
influence of the physics-based optimization.

V. EXPERIMENTS

In this section, we explore the effectiveness of our frame-
work through experiments designed to answer the following
questions: (1) Does the use of geometric algebra (GA)
representation enhance data and parameter efficiency? (2)
How does the method perform on out-of-distribution (OOD)
data with random SE(3) transformations? (3) How much
does the physics-informed refinement layer contribute to
grasp quality and stability?

We evaluate our method using the Shadowhand subset of
the MultiDex [3] dataset, containing 16,069 dexterous grasps
for 58 objects, split into 48 training and 10 test objects.
Grasp configurations are represented by g = [r,p,q] ∈ R33,
with objects represented by point clouds O ∈ R2048×3.
We follow Li et al. [3] and assess grasp success rates in
IssacGym [49], testing grasps under external forces along
±xyz axes, with success defined by stability across all tests.
We also measure diversity as the mean standard deviation
among all revolute joints. Baseline models include SceneDif-

fuser [7], FFHNet [5], and our model without the refinement
layer.

Our model outperforms baselines in both grasp success
rates and diversity, particularly in low-data regimes, as shown
in Figure 4. Despite having about 20% of the parameters
of FFHNet [5], it performs on par with or better than the
baseline models. The physics-informed refinement layer fur-
ther boosts success rates by 5%-10% (Table II) and enhances
robustness to SE(3) transformations, making our approach
more adaptable to OOD scenarios. Qualitative results (Fig-
ure 5) demonstrate the flexibility of our model in generating
stable grasps, where stronger λ values produce more stable
power grasps, and smaller λ values favor precision fingertip
grasps. This adaptability highlights the model’s effectiveness
in varying grasping tasks.

VI. CONCLUSION

We introduce a symmetry-aware, diffusion-based frame-
work for dexterous grasp generation leveraging geometric
algebra. Our approach enhances generalization to out-of-
distribution data, improves data and parameter efficiency, and
produces physically plausible grasps via a physics-informed
refinement layer. The model’s robustness and flexibility make
it well-suited for real-world robotic tasks, showing significant
improvements over existing methods. Future work will ex-
plore further optimizations and broader applications of our
framework in manipulation scenarios.
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