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Abstract—This paper presents a differential geometric control
approach that leverages SE(3) group invariance and equivari-
ance to increase transferability in learning robot manipulation
tasks that involve interaction with the environment. The proposed
approach is based on utilizing a recently presented geometric
impedance control (GIC) combined with a learning variable
impedance control framework, where the gain scheduling policy
is trained in a supervised learning fashion from expert demon-
strations. A geometrically consistent error vector (GCEV) is
fed to a neural network to achieve a gain scheduling policy.
We proved that the GIC and learning representation using
GCEV remain invariant under arbitrary SE(3) transformations,
i.e., translation and rotations. Furthermore, we show that the
proposed approach is equivariant when represented relative to
the spatial frame. A comparison of our proposed control and
learning framework with a well-known Cartesian space learning
impedance control, equipped with a Cartesian error vector-
based gain scheduling policy, confirms the significantly superior
learning transferability of our proposed approach.

Index Terms—Geometric Impedance Control, SE(3) Equivari-
ance and Left-invariance, Variable Impedance Control, Contact-
rich Manipulation Tasks

I. INTRODUCTION

To achieve full autonomy when executing tasks that require
contact-rich interactions, such as assembly and construction
tasks, robots need to robustly perceive where and how a task
must be performed. Vision systems produce 2D images or
3D point clouds that allow robots to perceive and understand
their environment. With these vision systems, recent vision-
based robotic manipulations focus on finding the desired end-
effector poses [1], [2], [3]. These works for vision-based
robotic manipulations are based on the philosophy that “every
manipulation task is a sequence of pick-and-places” [4].

Geometric deep learning (GDL) [5], [6] has been recently
adopted in the robotics society and has shown higher gen-
eralizability and sample efficiency performances. The GDL is
employed to deal with vision-based inputs and outputs desired
end-effector poses by exploiting group invariance and equiv-
ariance [7], [8], [9], [10], [11]. However, these vision-based
robotic manipulations deal with simple tabletop manipulation
tasks represented by pick-and-places that typically do not
require sophisticated control laws as the contact interaction
between the end-effector and the environment is minimized.
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In this paper, we leverage SE(3) group invariance and
equivariance, extensively studied in GDL, to enhance learning
transferability and sampling efficiency in contact-rich robotic
manipulation tasks. A geometric learning variable impedance
control is presented that utilizes the GIC in [12], [13] and
incorporates a learning variable impedance control framework
[14], [15], [16], where the gain scheduling policy is trained in
a supervised learning fashion from expert demonstrations. A
geometrically consistent error vector (GCEV) is fed to a neural
network to achieve a gain scheduling policy that remains
invariant under arbitrary SE(3) transformations. Our results
demonstrate that the SE(3) equivariance at the force (or con-
trol) level is the key to achieving high sample efficiency and
learning transferability in peg-in-hole (PiH) tasks undergoing
SE(3) transformation.

Looking ahead to the next step in vision-based robotic
manipulation, let’s assume that the desired end-effector pose
is obtained through SE(3) equivariant vision modules, such
as those described in [9], [10]. These modules make the vision
system both sample-efficient and robust to SE(3) transforma-
tions. This leads to a crucial question: Does the control law
underlying these tasks also need to be equivariant to be
effective? Our comparison of geometric and Cartesian space-
based formulations reveals that even with an SE(3) equivari-
ant vision module, the entire pipeline cannot accomplish the
contact-rich and direction-sensitive tasks that demand precise
force interaction without the force-level equivariance.

This workshop paper is a short version of [17], where a
more detailed exploration of these concepts can be found.

II. PRELIMINARIES

We are interested in the control problem of the manipula-
tor’s end-effector. The configuration of the manipulator’s end-
effector can be defined by its position and orientation, and
the configuration manifold lies in the Special Euclidean group
SE(3). Thus, we rely on the differential geometric formulation
of SE(3) manifold to control and formulate the problem. For
the details of the formulation and their notations, the readers
are referred to [17], [12], [13]. As our control and benchmark
control law formulations play crucial roles in the paper, we
will briefly introduce those in this section.

A. Geometric Impedance Control Law
We employ the geometric impedance control (GIC) law

proposed in [12]. We first note that g denotes the current
configuration matrix, with p and R representing the current
position and rotation matrix, i.e., g = (R, p). In a similar



way, gd = (Rd, pd) denotes the desired current configuration
matrix. In a nutshell, a GIC control law T̃ ∈ se∗(3) in the
wrench for a fixed PiH task, is given by

T̃ = −f
G
−KdV

b + G̃, (1)

where C̃, and G̃ are matrices in the operational space formula-
tion, Kd is a symmetric positive definite damping matrix, f

G
is

the elastic generalized force in se∗(3) and V b is a body-frame
velocity, e.g., V b = Jb(q)q̇ with q is joint coordinate and Jb(q)
is body-frame Jacobian matrix, both of them described on the
body-frame, which will be described subsequently. The elastic
geometric wrench (force) f

G
(g, gd) is given by

f
G
(g, gd) =

[
fp
fR

]
=

[
RTRdKpR

T
d (p− pd)

(KRR
T
d R−RTRdKR)

∨

]
, (2)

where Kp and KR denote symmetric positive definite stiffness
matrices in translation and rotation, respectively. Note that the
control law (1) can be interpreted as a PD control together
with gravity compensation. For more details on the GIC, such
as derivation and stability properties, we refer to [12], [13]
and its references [18], [19]. Here, we define a geometrically
consistent error vector (GCEV) e

G
, which will be utilized in

the learning impedance gains later in this paper. The GCEV
e
G
(g, gd) is defined as follows:

e
G
(g, gd) =

[
ep
eR

]
=

[
RT (p− pd)

(RT
d R−RTRd)

∨

]
∈ R6. (3)

Finally, we note that all the vectors/wrench, such as e
G

, V b,
and f

G
, are described in the body-frame coordinate unless

otherwise specified.

B. Cartesian space Impedance Control

As a benchmark approach for the proposed GIC, we also
briefly introduce a Cartesian space Impedance Controller
(CIC), which is a currently standard method for impedance
control. In the operational space formulation, correctly repre-
senting the rotational dynamics has always received significant
interest [20]. In particular, a positional Cartesian error vector
(CEV) e

C
widely utilized in CIC can be defined in the

following way [21], [22], [23].

e
C
= [(e

C,p
)T , (e

C,R
)T ]T , where (4)

e
C,p

= p−pd, e
C,R

= (rd1
×r1 + rd2

×r2 + rd3
×r3),

with R = [r1, r2, r3] and Rd = [rd1
, rd2

, rd3
]. Utilizing the

positional error vector in Cartesian space and considering a
fair comparison with the GIC formulation, we will utilize the
following CIC formulation for the PiH task.

T̃
C
= −K

C
e
C
−KdC

V s + G̃
C
, (5)

where KdC
is a damping matrix for the CIC, and K

C
=

blkdiag(K
C,p

,K
C,R

) with K
C,p

and K
C,R

are translational
and rotational stiffness matrices, respectively. To implement
control law (1) and (5), the wrenches should first be converted
to joint torque T by multiplying corresponding Jacobian
matrices, i.e., T = JT

b T̃ and T = JT
s T̃

C
, respectively.

III. PROBLEM DEFINITION AND SOLUTION APPROACH

1) Overview: Our ultimate goal is to provide a learning-
based solution to solve a peg-in-hole task, a classic representa-
tive of contact-rich force-based robotic manipulation tasks. We
will address this problem in the framework of learning variable
impedance control, where the gain scheduling policy of the
impedance control laws is trained using learning algorithms. In
particular, behavior cloning (BC) from expert demonstrations
is utilized in a supervised learning fashion to obtain the gain
scheduling policy.

To achieve this, we introduce a gain scheduling policy
parameterized by a simple neural network. This neural network
takes as input the positional signals representing the current
end-effector pose and the desired goal pose, such as GCEV
(e

G
) and CEV (e

C
). Formally,

(Kp,KR)t = πθ(st), (6)

Kp and KR are impedance gains defined in (2) or (5), and
θ denotes parameters of the neural network-based policy πθ.
In our case, st denotes input to the neural network, either e

G

or e
C

. We employ a standard multi-layer perceptron (MLP)
as a neural network. We will call πθ as a gain-scheduling
policy and drop the subscript t for the compactness of notation.
To show the effectiveness of the geometric formulation, we
propose and compare two different approaches to learning
variable impedance control: 1. Selection of the control rule
(GIC vs CIC), 2. Selection of the states st (e

G
and e

C
).

The performances are evaluated on four main scenarios in
Fig. 1. The gain scheduling policy πθ is trained only in the
default scenario (Fig. 1(a)). The trained policy is then tested
in the other scenarios (Fig. 1s(b)-(d)) to evaluate its zero-
shot transferability and robustness to OOD data. The detailed
environmental setup and descriptions regarding data collection
can be found in [17].

A. Solution Approach

In this subsection, we will first introduce our proposed
approach. In what follows, the behavior cloning (BC) to obtain
the gain-scheduling policy is introduced.

1) Proposed Approach: Our proposed approach utilizes
GIC with a learning impedance gain scheduling policy, where
the input to the neural network s is the GCEV eg(g, gd)
defined in (3). The action from the gain scheduling policy
then becomes (Kp,KR) = πθ(eG

). The GIC control law (2)
equipped with gain scheduling policy πθ(eG

) has a crucial
property for learning transferability as shown in the following
lemma.

Lemma 1. Left-invariance of the GCEV (3) and the elastic
wrench (2)
e
G
(g, gd) and f

G
(g, gd) are left-invariant to the arbitrary left-

transformation gl in SE(3), i.e. ∀gl ∈ SE(3),

e
G
(g, gd) = e

G
(glg, glgd), f

G
(g, gd) = f

G
(glg, glgd) (7)

Proof. See [17].



(a) Default Case (b) Case 1 (c) Case 2 (d) Case 3 (e) Case 4
Fig. 1: Robot performing a peg into a hole insertion task in different scenarios for testing learning transferability. The data is
collected, and the policy is trained only in performing the task shown in (a). The trained policy is then tested on the tasks
shown in (b)-(e), where the insertion hole is translated in different orientations. (b): tilted in +x direction for 30◦ (c): tilted in
−y direction for 30◦ (d): tilted in −y direction for 90◦ (e): tilted in +x direction in arbitrary angle ϕ ∈ [−135◦, 135◦]. The
coordinate frame is attached to the first figure.

Domain Randomization: Domain randomization is a cru-
cial technique in both learning manipulation tasks to enhance
robustness by allowing the neural network to explore a broader
range of state space [24]. In conventional impedance gains
learning problem [16], domain randomization is typically ap-
plied to both the initial and goal end-effector poses. However,
under the proposed GIC framework, domain randomization
is only necessary for the initial pose of the end-effector, as
demonstrated in the following proposition.

Proposition 1. For the learning variable impedance control
problem based on GIC law (1), the following equation holds
true:

f
G
(g, glgd) = f

G
(g−1

l g, gd) (8)

Proof. See [17].

The effects of Proposition 1 on learning strategies are as
follows. First, since the main driving force of (1) with gain
scheduling policy is f

G
(g, gd) in (2), we focus on the prop-

erties of f
G
(g, gd). The domain randomization on the target

pose can be represented by f
G
(g, glgd) where gl ∈ SE(3) is

arbitrary. Then, the result of Proposition 1 reads that

f
G
(g, glgd) = f

G
(g−1

l g, gd)

Note that following the axioms of groups (Chap 2.1, [25]),
g−1
l can be denoted by another group element g′l since gl

is arbitrary. Finally, f
G
(g′lg, gd) means that the domain ran-

domization on the target pose of the end-effector is identical
to randomization on the initial pose. Therefore, independent
domain randomizations on both the target pose and the initial
pose are not necessary during the training process. Only the
initial pose relative to the target pose needs to be randomized,
or vice versa, but not both. This result is crucial in robotics
applications where the cost of collecting data in the real world
is substantial.

IV. EXPERIMENTS AND DISCUSSIONS

A. Behavior Cloning (BC) result

The results of the BC experiments are presented in Table. I.
Each task was tested 100 times, and the success cases were

TABLE I: Success rates of the BC policies for the proposed
and the benchmark approaches (Tested 100 times each, Values
in Percentage %)

Method Default Case 1 Case 2 Case 3

BC Proposed (GIC+GCEV) 100 99 95 100
BC Benchmark (CIC+CEV) 100 0 0 1

BC Mixed 1 (GIC+CEV) 99 54 49 27
BC Mixed 2 (CIC+GCEV) 100 0 0 0

counted. The BC policy was trained with the GCEV and exe-
cuted with the GIC (GIC+GCEV), and the trained policy was
successfully transferred to the other tasks without a significant
drop in the success rate. However, the BC policy trained with a
CEV and executed with CIC (CIC+CEV) failed to transfer the
trained policy, resulting in a dramatic decrease in the success
rate. The reason for this difference in transferability can be
attributed to the error vector representation. The relationship
between left invariance and transferability is further explained
in Remark 1.

Remark 1. Why does left-invariance matter?
The left-invariance of the error vector implies that the

chosen error vector is invariant to the selection of the global
coordinate system. In this paper, we interpret left-invariance
in a slightly different manner. Consider the situation where
the desired and current configurations are transformed through
a left action of the SE(3) group, which corresponds to a
change in the spatial coordinate frame – See Fig. 2. Due to
the left-invariance of the GCEV (3), the error vector remains
unchanged in cases (a) and (b) in Fig. 2. Therefore, from the
perspective of the proposed approach, the task remains invari-
ant to translational/rotational perturbations. In this perspective,
the use of the left-invariant error vector e

G
can help address

distributional shift or out-of-distribution issues, as the trained
policy will consistently encounter the same input e

G
.

B. Left-Invariance is not enough
The question arises whether training a policy based on

GCEV or equivalent left-invariant features enables trans-
ferability to translational/rotational perturbations. To answer
this question, we test different combinations of trained gain
scheduling policies and control methods: BC policy with



Fig. 2: (Left) Peg and hole configurations are represented
by g and gd, respectively. (Right) Peg and hole undergo left
transformation via an action gl ∈ SE(3). The GCEV e

G
(3)

and elastic force f
G

(2) are invariant to the left transformation
of SE(3). {s} represents spatial coordinate frame, while {B}
and {B′} represent body coordinate frames.

Cartesian error vector executed with GIC (GIC+CEV) and BC
policy with a GCEV executed with CIC (CIC+GCEV). If left-
invariance of the feature were the only factor for transferabil-
ity, we would expect the BC policy with the Cartesian error
vector executed with GIC (GIC+CEV) to not be transferable
due to the lack of left-invariance in the Cartesian error vector.
Conversely, the BC policy using a GCEV executed with CIC
would be transferable.

However, the experimental results presented in 3rd and 4th

rows of Table I contradict the hypothesis. The GIC with a
gain scheduling policy trained with the Cartesian error vector
(GIC + CEV) showed some transferability in Case 1 and
Case 2, with success rates near 50%. However, in Case 3,
with a tilt of 90 degrees, the success rate drops to 27%
due to encountering an unexperienced state distribution. This
suggests that a left-invariant gain scheduling policy alone is
not enough for transferability.

On the other hand, the CIC using a GCEV produced
results consistent with our hypothesis. Even though the gain
scheduling policy for CIC was trained with a GCEV, the
direction of the gains and resulting force direction are still
represented in the Cartesian frame. Thus, the policy outputs the
same gains it was trained on, but the resulting force direction
is not suitable for tilted cases.

Consequently, it is concluded that the left-invariant gain
scheduling policy alone is not enough, and a more fundamental
factor is needed to address transferability - the direction of
forces. Unlike CIC, the forces in GIC are defined in the body
frame, resulting in the automatic change in the direction of
forces (See Fig. 2, f

G
on each case) – which implies an

equivariance property. We state that the key to transferability
lies in a control law represented in the body-frame coordinate
and the left-invariant gain scheduling policy. The invariant gain
scheduling policy is obtained from the neural network with a
GCEV as input, while the left-invariant feedback control law is
inherited from the structure of GIC. To establish a connection
between our statement and the equivariance property, we first
present the definition of equivariance.

Definition 1. Consider a function f : X → Y , i.e., y = f(x)
with x ∈ X and y ∈ Y . The function f is equivariant to the

group g if the following condition is satisfied [6]:

f(ρXx) = ρYf(x) (9)

where ρX represents the action of group g in the domain X
and ρY represents the action of group g in the codomain Y .

Based on Definition 1, we propose the following proposi-
tion.

Proposition 2. The feedback terms in GIC law (1) described
in the body frame are equivariant if it is described in the
spatial frame, i.e., ∀gl ∈ SE(3)

fs
G
(glg, glgd) = AdT

gl
f
G
(g, gd) (10)

Here, superscript s denotes that the given vector is repre-
sented to the spatial frame.

Proof. See [17].

Note that we only consider feedback terms in (1) since the
feedforward terms are just employed to cancel the manipulator
dynamics, not affecting the closed-loop dynamics. A remark
on the Proposition 2 is provided.

Remark 2. Extensions to general force-based policy
It is worth mentioning that our concept proposed in Proposi-
tion 2 can also be extended to general force-based policies.
If a force-based policy is left-invariant in the body-frame,
e.g., implemented using a neural network with left-invariant
features as input, and described in the end-effector body frame,
it will be guaranteed to be left-equivariant in the spatial frame.
The GCEV (3) introduced in this paper is an example of such
a left-invariant feature.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a geometric approach leveraging SE(3) group
invariance and equivariance for contact-rich robotic manipula-
tion task learning is presented. To solve the Peg-in-Hole (PiH)
task, the proposed approach builds on top of the geometric
impedance control (GIC), where its impedance gains are
changed via a left-invariant gain scheduling policy. Expert
behavior cloning is chosen to train the gain scheduling policy.
Through theoretical analysis, we prove that the proposed
GIC and the geometrically consistent error vector (GCEV)
used for learning are left-invariant relative to SE(3) group
transformations when represented in the end-effector’s body
frame system, enabling learning transferability. Furthermore,
we show that left invariance in the body-frame representation
leads to SE(3) equivariance of the proposed approach when
described in a spatial frame. A PiH simulation experiment
confirms the learning transferability of our proposed method,
which is not exhibited by the well-known Cartesian space-
based benchmark approach.

For future work, we will address more realistic scenarios
where the exact goal poses are unknown and need to be
estimated via sensors, e.g., images or point cloud-based inputs.
By combining the proposed approach with widely studied
SE(3) equivariant vision modules, we anticipate achieving
fully end-to-end, vision-to-force SE(3) equivariance.
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