

Geometric Algebra Grasp Diffusion for Dexterous Manipulators

Tao Zhong and Christine Allen-Blanchette

Princeton University

Overview

Dexterous grasping in unstructured environments, where objects are encountered in diverse poses, remains a key challenge in robotics. Existing methods often predict grasps in canonical object poses, limiting their effectiveness in real-world scenarios. Our novel approach introduces a **symmetryaware diffusion-based grasp generation framework**, which uses **geometric algebra** to enforce *SE*(3) **equivariance**, enabling robust and scalable grasp generation.

Figure 1: Our grasp generation model maintains the probability $P(\mathbf{g}|O) = P(\mathbf{g}'|O')$ under $SE(3)$ transformations.

Methodology

• The grasp generation process is modeled using a **conditional diffusion model**:

Grasp Generation Problem

- Given an object point cloud $O \in \mathbb{R}^{N \times 3}$, we aim to generate a dexterous grasp $\mathbf{g} = [\mathbf{r}, \mathbf{p}, \mathbf{q}]$, where \mathbf{r} represents rotation, **p** represents position, and **q** represents hand joint configurations. The generation process is modeled as $p(\mathbf{g} \mid O)$. •We ensure **equivariance** to *SE*(3) transformations, meaning the grasp generation remains invariant to changes in object pose: $p([\mathbf{r}, \mathbf{p}, \mathbf{q}] | O) = p([\rho \cdot (\mathbf{r}, \mathbf{p}), \mathbf{q}] | \rho_{\mathbb{R}^3}(O)).$ (1) **Geometric Algebra Framework**
- •We leverage 16-dimensional multivectors in the **projective geometric algebra** G3*,*0*,*¹ for representing grasps and object point clouds. • This allows us to directly encode symmetry

 $q(\mathbf{g}_{1:T} | \mathbf{g}_0) = \frac{T}{T}$ Π *t*=1 $\mathcal{N}(\mathbf{g}_t; \sqrt{1-\beta_t}\mathbf{g}_{t-1}, \beta_t I)$ (2) •Training involves minimizing the noise prediction loss: $L_{\epsilon} = ||\epsilon_{\theta}(\mathbf{g}_t, O, t) - \epsilon_t||$ 2 (3)

Figure 3: **The GATr Block** processes key, value, and query inputs with equivariant layers, using Geometric Algebra-based attention $Results$

properties into the neural network architecture shown in Fig [2](#page-0-0) and [3,](#page-0-1) ensuring **equivariance**.

Diffusion-Based Grasp Generation

2

Physics-Informed Refinement

•A physics-informed refinement layer ensures physical plausibility with stability loss:

 $L_{\text{stability}} =$ 1 *M M* X $m=1$ $\sqrt{ }$ $(||\dot{\mathbf{p}}_{\text{obj}}(T_{\text{sim}})_{m}||_{2}^{2} + ||\dot{\mathbf{r}}_{\text{obj}}(T_{\text{sim}})_{m}||_{2}^{2}$ \setminus $\left(4\right)$.

• We visualize grasps generated by our model, showcasing its ability to generate stable and diverse grasps for unseen objects. The refinement weight λ controls the grasp type, favoring **power grasps** for higher values and **precision fingertip grasps** for smaller values.

• The physics-informed refinement layer improves grasp stability by **5%-10%**, guiding the diffusion process toward physically feasible grasps.

Figure 2: **Model architecture for equivariant dexterous grasp generation.** Point cloud *O* and grasp configuration *g^t* are embedded using G3*,*0*,*¹ embeddings, processed through GATr [1] blocks for *SE*(3) equivariance, with down-sampling to reduce computational load.

Figure 4: **Experimental Results.** Grasp success rate and diversity metrics across different data amounts. "Ours w/ opt" refers to our model with the physics-informed refinement layer.

Stronger Physics-Informed Refinement Weight

Figure 5: **Example Grasps Generated by our Method.** Our model generates stable grasps for unseen objects.

- Our method outperforms baseline methods [2, 3] in **grasp success rate** and **grasp diversity**, especially in **low-data regimes**, indicating improved data efficiency.
- Our approach remains robust when tested on objects with unseen *SE*(3) transformations, outperforming baseline methods [2, 3]. The model's ability to generalize to out-of-distribution data ensures applicability in

real-world manipulation tasks.

Ablation: Impact of Refinement

Table 1: Comparison of the grasp success rate with and without physics-informed refinement layer.

References & Links

[1] Brehmer, et al. NeurIPS 2023 [2] Huang et al. CVPR 2023 [3] Meyer et al. ICRA 2022

• More details at: https://gagrasp.github.io/

