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Dexterous grasping in unstructured environments, . i

where objects are encountered in diverse poses, re-
mains a key challenge in robotics. Existing meth- Figure 2: Model architecture for equivariant dexterous grasp generation. Point cloud O and grasp configuration g; are
embedded using G301 embeddings, processed through GATr [1] blocks for SE(3) equivariance, with down-sampling to reduce
computational load.

ods often predict grasps in canonical object poses,

limiting their effectiveness in real-world scenar-
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Figure 3: The GATr Block processes key, value, and query inputs with equivariant layers, using Geometric Algebra-based attention
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Figure 1: Our grasp generation model maintains the probability 48% - - - - - -
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Figure 4: Experimental Results. Grasp success rate and diversity metrics across different data amounts. "Ours w/ opt" refers to our
Methodology model with the physics-informed refinement layer.

Grasp Generation Problem

e Given an object point cloud O € RY*3 we aim to
generate a dexterous grasp g = |r, p, q|, where r
represents rotation, p represents position, and q
represents hand joint configurations. The
generation process is modeled as p(g | O).

e We ensure equivariance to SFE(3)
transformations, meaning the grasp generation
remains invariant to changes in object pose:

p(lr,p,q] | O) =p(lp- (r,p),q] | pre(0)). (1) Stronger Physics-Informed Refinement Weight >
Geometric Algebra Framework Figure 5: Example Grasps Generated by our Method. Our model generates stable grasps for unseen objects.
» We leverage 16-dimensional multivectors in the e Our method outperforms baseline methods |2, 3] in grasp success rate and grasp diversity, especially
projective geometric algebra (3 for in low-data regimes, indicating improved data efficiency:.
representing grasps and object point clouds. e Our approach remains robust when tested on objects with unseen SFE(3) transformations, outperforming
o T'his allows us to directly encode symmetry baseline methods |2, 3]. The model’s ability to generalize to out-of-distribution data ensures applicability in
properties into the neural network architecture real-world manipulation tasks.

shown in Fig 2 and 3, ensuring equivariance. e We visualize grasps generated by our model, showcasing its ability to generate stable and diverse grasps for

Diffusion-Based Grasp (zeneration unseen objects. The refinement weight A controls the grasp type, favoring power grasps for higher values

o The grasp generation process is modeled using a and precision fingertip grasps for smaller values.

conditional diffusion model: Ablation: Impact of Refinement References & Links
q(g1.1 | &) = Elf\/‘(gt; A= B, B)  (2) N
e Training involves minimizing the noise prediction Ours SceneDiffuser :1: Brehmer, et al. NeurlP5 2023
loss: without Refinement 61.42 60.47 2| Huang et al. CVPR 2023
Le = |leg(gt, O, 1) — Gtug (3) with Refinement 67.89 65.31 3] Meyer et al. ICRA 2022
Table 1: Comparison of the grasp success rate with and without e More details at: https://gagrasp.github.io/

Physics-Informed Refinement o .
physics-informed refinement layer.

* A physics-informed refinement layer ensures e The physics-informed refinement layer improves

orasp stability by 5%-10%, guiding the diffusion
(1Dobi(Tiim)ml 5 + [ Eoni(Thim)m] [5) - (4) process toward physically feasible grasps.

physical plausibility with stability loss:
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